Molecular therapy : the journal of the American Society of Gene Therapy
-
Herpesvirus-mediated transfer of the human preproenkephalin gene to primary afferent nociceptors prevents phasic thermal allodynia/hyperalgesia in mice. It is not known, however, whether similar viral treatments would reverse ongoing or chronic pain and allodynia/hyperalgesia. To this end, mice were given intrathecal injections of pertussis toxin (PTX), which produces a weeks-long thermal hyperalgesia apparently by uncoupling certain G proteins from inhibitory neurotransmitter receptors. ⋯ Interestingly, however, while the anti-hyperalgesic effect of the enkephalin-encoding virus on C-fiber-mediated responses was reversed by intrathecal application of micro or delta opioid antagonists, only delta antagonists reversed the effect of this virus on Adelta hyperalgesia. Thus, virus-mediated delivery of the proenkephalin cDNA reverses thermal hyperalgesia produced by PTX-induced ribosylation of inhibitory G proteins by an opioid-mediated mechanism. These results suggest that herpesvirus vectors encoding analgesic peptides may be useful in attenuating centrally mediated, ongoing neuropathic pain and/or hyperalgesia.