Molecular therapy : the journal of the American Society of Gene Therapy
-
Human foamy virus (HFV), with its nonpathogenic nature and several unique features for gene transfer, is a promising vector system for neurological disorders gene therapy. The question of whether HFV vectors can be developed for the expression of therapeutic genes in primary astrocytes of the brain may be of interest. ⋯ We found that the transduction of GAD vector resulted in isoform-specific expression of GAD, synthesis of a significant amount of GABA and tonical GABA release, and behavioral recovery in rat Parkinson's disease (PD) models. These results suggested that HFV vector had the ability to transduce astrocytes and HFV vector-derived GAD expression in astrocytes provided a potential strategy for the treatment of neurological disorders associated with hyperexcitable or diminished inhibitory activity.
-
This study assessed the efficacy of pancreatic surface delivered enkephalin (ENK)-encoding herpes simplex virus type 1 (HSV-1) on spontaneous behaviors and spinal cord and pancreatic enkephalin expression in an experimental pancreatitis model. Replication-defective HSV-1 with proenkephalin complementary DNA (cDNA) (HSV-ENK) or control beta-galactosidase cDNA (HSV-beta-gal), or media vehicle (Veh) was applied to the pancreatic surface of rats with dibutyltin dichloride (DBTC)-induced pancreatitis. Spontaneous exploratory behavioral activity was monitored on days 0 and 6 post DBTC and vector treatments. ⋯ On day 6, compared to pancreatitis and vector controls, the DBTC/HSV-ENK treated rats had significantly improved spontaneous exploratory activities, increased met-ENK staining in the pancreas and spinal cord, and normalized c-Fos staining in the dorsal horn. Histopathology of pancreas in DBTC/HSV-ENK treated rats showed preservation of acinar cells and cytoarchitecture with minimal inflammatory cell infiltrates, compared to severe inflammation and acinar cell loss seen in DBTC/HSV-beta-gal and DBTC/Veh treated rats. Targeted transgene delivery and met-ENK expression successfully produced decreased inflammation in experimental pancreatitis.