Molecular therapy : the journal of the American Society of Gene Therapy
-
The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. ⋯ CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment.
-
Transplantation of hematopoietic stem cells (HSCs) with a naturally occurring CCR5 mutation confers a loss of detectable HIV-1 in the patient, making ablation of the CCR5 gene in HSCs an ideal therapy for an HIV-1 cure. Although CCR5 disruption has been attempted in CD4+ T cells and hematopoietic stem/progenitor cells (HSPCs), efficient gene editing with high specificity and long-term therapeutic potential remains a major challenge for clinical translation. Here, we established a CRISPR/Cas9 gene editing system in human CD34+ HSPCs and achieved efficient CCR5 ablation evaluated in long-term reconstituted NOD/Prkdcscid/IL-2Rγnull mice. ⋯ More importantly, an HIV-1 resistance effect was observed as indicated by significant reduction of virus titration and enrichment of human CD4+ T cells. Hence, we successfully established a CRISPR/Cas9 mediated CCR5 ablating system in long-term HSCs, which confers HIV-1 resistance in vivo. Our study provides evidence for translating CCR5 gene-edited HSC transplantation for an HIV cure to the clinic.