Molecular therapy : the journal of the American Society of Gene Therapy
-
Severe photoreceptor cell death in retinal degenerative diseases leads to partial or complete blindness. Optogenetics is a promising strategy to treat blindness. The feasibility of this strategy has been demonstrated through the ectopic expression of microbial channelrhodopsins (ChRs) and other genetically encoded light sensors in surviving retinal neurons in animal models. ⋯ The improved light sensitivity of the CoChR mutants was confirmed by ex vivo electrophysiological recordings in the retina. Furthermore, the CoChR mutants restored the vision of a blind mouse model under ambient light conditions with remarkably good contrast sensitivity and visual acuity, as evidenced by the results of behavioral assays. The ability to restore functional vision under normal light conditions with the improved CoChR variants removed a major obstacle for ChR-based optogenetic vision restoration.
-
Clinical success of autologous CD19-directed chimeric antigen receptor T cells (CAR Ts) in acute lymphoblastic leukemia and non-Hodgkin lymphoma suggests that CAR Ts may be a promising therapy for hematological malignancies, including multiple myeloma. However, autologous CAR T therapies have limitations that may impact clinical use, including lengthy vein-to-vein time and manufacturing constraints. Allogeneic CAR T (AlloCAR T) therapies may overcome these innate limitations of autologous CAR T therapies. ⋯ The safety profile of allogeneic BCMA CAR Ts was further enhanced by incorporating a CD20 mimotope-based intra-CAR off switch enabling effective CAR T elimination in the presence of rituximab. Allogeneic BCMA CAR Ts induced sustained antitumor responses in mice supplemented with human cytokines, and, most importantly, maintained their phenotype and potency after scale-up manufacturing. This novel off-the-shelf allogeneic BCMA CAR T product is a promising candidate for clinical evaluation.