American journal of translational research
-
Extracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. ⋯ Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support.
-
Ischemia related inflammation is the most critical factor for the survival of transplanted mesenchymal stem cells (MSCs), and strategies for controlling excessive inflammation after acute myocardial infarction (AMI) are essential and necessary for cell transplantation therapy. Our present study tested the effect of decreased Ly6C(high) monocytes on mouse MSCs transplantation after AMI. ⋯ We first observed the increased survival of transplanted MSCs (11.2 ± 3.4/mm(2) vs. 3.5 ± 1.6/mm(2), p < 0.001), and the decreased apoptosis of cardiomyocytes (11.20% ± 3.55% vs. 20.51% ± 8.17%, p < 0.001) in the infarcts at 3 days in the CCR2 antagonist group. An increased number of capillaries and small arterioles (139.6 ± 21.7/mm(2) vs. 95.4 ± 17.6/mm(2), p < 0.001) and an increased cardiac myosin-positive area (17.9% ± 6.6% vs. 11.8% ± 3.5%, p < 0.001) were also observed in the infarct zone at 21 days post MSC infusion in the CCR2 antagonist group. In addition, a significantly increased LvEF% (50.17 ± 10.06 vs. 45.44 ± 9.45, p < 0.001) was detected at the same time compared to the control mice. We further demonstrated that both the mitochondrial membrane potential of the MSCs (0.45 ± 0.11 vs. 3.4 ± 0.3, p < 0.001) and stromal cell-derived factor-1 (SDF-1) secreted by the MSCs significantly decreased (80.77 ± 39.02 pg/ml vs. 435.5 ± 77.41 pg/ml, p < 0.001) when co-cultured with Ly6C(high) monocytes. This is possibly mediated by the over-expressed cytokines secreted by the Ly6C(high) monocytes compared to the Ly6C(low) monocytes, including IL-1 (139.45 ± 30.44 vs. 80.05 ± 19.33, p < 0.001), IL-6 (187.82 ± 40.43 vs. 135.5 ± 22.09, p < 0.001), TNF-α (121.77 ± 31.65 vs. 75.3 ± 22.14, p < 0.001) and IFN-γ (142.46 ± 27.55 vs. 88.25 ± 19.91, p < 0.001).
-
To investigate the protective effects of perfluorooctyl-bromide (PFOB) nanoparticles on early brain injury (EBI) following subarachnoid hemorrhage (SAH), a total of 120 rats were randomly assigned to the following groups: Sham operation group (n = 40), SAH group (n = 40), and SAH + PFOB group (n = 40). Endovascular perforation was performed to induce subarachnoid hemorrhage. Brain water content was measured 24 h after surgery. ⋯ TUNEL staining showed that neuronal apoptosis was significantly reduced in the hippocampal CA1 region (P<0.01). RT-PCR and Western-blot data indicated that expressions of Caspase-3 and Bax were both significantly reduced, while bcl-2 expression was increased significantly at 12, 24, 48, and 72 h after SAH (P<0.01). Together, our data support that PFOB nanoparticles with high oxygen content could counteract ischemia and hypoxia, block neuronal apoptotic pathways, reduce neuronal apoptosis, and therefore, achieve neuroprotective effects in EBI following SAH.
-
This study investigated whether combining melatonin and apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) was superior to ADMSC alone in ameliorating sepsis-induced acute lung injury. Adult male Sprague-Dawley rats (n=50) were randomized equally into five groups: sham controls (SC), sepsis induced by cecal-ligation and puncture (CLP), CLP-melatonin, CLP-A-ADMSC, and CLP-melatonin-A-ADMSC. Circulating interleukin (IL)-6 at 6, 18, and 72 hrs, were highest in CLP and lowest in SC groups, higher in CLP-melatonin than CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups, higher in CLP-A-ADMSC than CLP-melatonin-A-ADMSC groups (all p<0.001). ⋯ Changes in protein expressions of inflammatory (oxidative stress, RANTES, TNF-α, NF-κB, MMP-9, MIP-1, IL-1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF-β) markers and those of reactive-oxygen-species (NOX-1, NOX-2) displayed an identical pattern compared to that of circulating IL-6 in all groups (all p<0.001). Anti-oxidative capacities (GR+, GPx+, HO-1, NQO-1+) and angiogenesis marker (CXCR4+ cells) were lowest in SC group but highest in CLP-melatonin-A-ADMSC group, lower in CLP than CLP-melatonin and CLP-A-ADMSC groups, and lower in CLP-melatonin than CLP-A-ADMSC groups (all p<0.001). In conclusion, combined melatonin and A-ADMSC were superior to A-ADMSC alone in protecting the lung from sepsis-induced injury.
-
The factors underlying epilepsy are multifaceted, but recent research suggests that the brain's neural circuits, which play a key role in controlling the balance between epileptic and antiepileptic factors, may lie at the heart of epilepsy. This article provides a comprehensive review of the neural mechanisms and potential treatment of intractable epilepsy from neural inflammatory responses, melanocortin circuits in brain and pedunculopontine tegmental nucleus. Further studies should be undertaken to elucidate the nature of neural circuits so that we may more effectively apply these new preventive and symptomatic therapies to the patient suffering from medically refractory seizures and its complications.