Respiration physiology
-
Respiration physiology · Jan 2001
Effect of slow wave and REM sleep on thyropharyngeus and stylopharyngeus activity during induced central apneas.
The pharyngeal constrictors have been hypothesized to play an important role in the regulation of upper airway (UAW) patency in patients with sleep apnea. However, little research has focused on the activation and control of muscles that determine the lateral and posterior wall of the retropalatal airway dimensions. Our aim was to investigate the effects of slow wave sleep (SWS) and rapid eye movement (REM) sleep on the activation of pharyngeal constrictor (thyropharyngeus; TP) and dilator (stylopharyngeus; SP) muscles during eupneic breathing and induced central apneas. ⋯ During REM, TP and SP activity were not different from their reduced controls (P>0.02). The data supports our hypotheses that SWS and REM sleep causes a reduction in the eupneic TP and SP activity, as well as a reduction in TP response to induced apneas. However, the relative imbalance in TP vs SP activity during the recovery from an apnea (awake and SWS) suggest that an imbalance of active neuromuscular forces may contribute to upper airway narrowing in mixed apneas, but not in central apnea during sleep.
-
Adult Respiratory Distress Syndrome is a disease with functional lung heterogeneity and thus a ventilator-delivered breath may over-distend non-involved areas. In rats we examined ventilator-delivered tidal volume (TV) breaths of 7 and 20 ml/kg on lung water as evidence of lung injury. We examined the role of aquaporins on ventilator-induced lung injury (VILI) by infusing HgCl(2) which inhibits aquaporins by binding cysteine. ⋯ Equimolar cysteine infusions prevented the HgCl(2) from increasing the W/D above that seen with TV 20 ml/kg. Thus ventilation with TV of 20 ml/kg produced a protein-rich lung edema. Aquaporin channels may have a protective effect in VILI.