Pharmaceuticals (Basel, Switzerland)
-
Pharmaceuticals (Basel) · May 2021
Signal Detection of Adverse Drug Reactions of Cephalosporins Using Data from a National Pharmacovigilance Database.
This case-non-case study aims to detect signals not currently listed on cephalosporin drug labels. From 2009 to 2018, adverse event (AE) reports concerning antibacterial drugs (anatomical therapeutic chemical (ATC) code J01) in the Korea Adverse Events Reporting System (KAERS) database were examined. For signal detection, three indices of disproportionality, proportional reporting ratio (PRR), reporting odds ratio (ROR), and information component (IC), were calculated. ⋯ Additionally, six serious AEs that were not listed on drug labels such as cefaclor-induced stupor (ten cases) and cefaclor-induced respiratory depression (four cases) were found. Detecting signals using a national pharmacovigilance database is useful for identifying unknown ADRs. This study identified signals of cephalosporins that warrant further investigation.
-
Pharmaceuticals (Basel) · Apr 2021
ReviewCOVID-19 Vaccines: A Review of the Safety and Efficacy of Current Clinical Trials.
Various strategies have been designed to contain the COVID-19 pandemic. Among them, vaccine development is high on the agenda in spite of the unknown duration of the protection time. ⋯ Therefore, comparing the protective efficacy and risks of vaccination is essential for the global control of COVID-19 through herd immunity. This study reviews the most recent data of 12 vaccines to evaluate their efficacy, safety profile and usage in various populations.
-
Pharmaceuticals (Basel) · Nov 2020
ReviewRole of 2-[18F]FDG as a Radiopharmaceutical for PET/CT in Patients with COVID-19: A Systematic Review.
Some recent studies evaluated the role of fluorine-18 fluorodeoxyglucose (2-[18F]FDG) as a radiopharmaceutical for positron emission tomography/computed tomography (PET/CT) imaging in patients with Coronavirus Disease (COVID-19). This article aims to perform a systematic review in this setting. A comprehensive computer literature search in PubMed/MEDLINE and Cochrane library databases regarding the role of 2-[18F]FDG PET/CT in patients with COVID-19 was carried out. ⋯ Evidence-based data showed first preliminary applications of this diagnostic tool in this clinical setting, with particular regard to the incidental detection of interstitial pneumonia suspected for COVID-19. To date, according to evidence-based data, 2-[18F]FDG PET/CT cannot substitute or integrate high-resolution CT to diagnose suspicious COVID-19 or for disease monitoring, but it can only be useful to incidentally detect suspicious COVID-19 lesions in patients performing this imaging method for standard oncological and non-oncological indications. Published data about the possible role of 2-[18F]FDG PET/CT in patients with COVID-19 are increasing, but larger studies are warranted.
-
Pharmaceuticals (Basel) · Oct 2020
Effect of Tocilizumab in Hospitalized Patients with Severe COVID-19 Pneumonia: A Case-Control Cohort Study.
Tocilizumab, an anti-interleukin-6 receptor, administrated during the right timeframe may be beneficial against coronavirus-disease-2019 (COVID-19) pneumonia. All patients admitted for severe COVID-19 pneumonia (SpO2 ≤ 96% despite O2-support ≥ 6 L/min) without invasive mechanical ventilation were included in a retrospective cohort study in a primary care hospital. The treatment effect of a single-dose, 400 mg, of tocilizumab was assessed by comparing those who received tocilizumab to those who did not. ⋯ These results were similar in the overall cohort (n = 246), with Cox multivariable analysis yielding a protective association between tocilizumab and primary outcome (adjusted HR = 0.26 (95%CI = 0.135-0.51, p = 0.0001), confirmed by inverse probability score weighting (IPSW) analysis (p < 0.0001). Analyses on mortality only, with 28 days of follow-up, yielded similar results. In this study, tocilizumab 400 mg in a single-dose was associated with improved survival without mechanical ventilation in patients with severe COVID-19.
-
On 11 March 2020, the coronavirus disease (COVID-19) was defined by the World Health Organization as a pandemic. Severe acute respiratory syndrome-2 (SARS-CoV-2) is the newly evolving human coronavirus infection that causes COVID-19, and it first appeared in Wuhan, China in December 2019 and spread rapidly all over the world. COVID-19 is being increasingly investigated through virology, epidemiology, and clinical management strategies. ⋯ Moreover, advances in molecular biology techniques and computational analysis have allowed for the better recognition of the virus structure and the quicker screening of chemical libraries to suggest potential therapies. This review aims to summarize rationalized pharmacotherapy considerations in COVID-19 patients in order to serve as a tool for health care professionals at the forefront of clinical care during this pandemic. All the reviewed therapies require either additional drug development or randomized large-scale clinical trials to be justified for clinical use.