Acta neuropathologica communications
-
Acta Neuropathol Commun · Jun 2014
Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice.
Accumulation of β-amyloid (Aβ) in the brain is essential to Alzheimer's disease (AD) pathogenesis. Carriers of the apolipoprotein E (APOE) ε4 allele demonstrate greatly increased AD risk and enhanced brain Aβ deposition. In contrast, APOE ε2 allele carries show reduced AD risk, later age of disease onset, and lesser Aβ accumulation. ⋯ Between the age of 6 and 10 months APP/E2 and APP/E4 mice received treatment with Aβ12-28P, a non-toxic, synthetic peptide homologous to the apoE binding motif within the Aβ sequence, which competitively blocks the apoE/Aβ interaction. In both lines, the treatment significantly reduced brain Aβ accumulation, co-accumulation of apoE within Aβ plaques, and neuritic degeneration, and prevented memory deficit in APP/E4 mice. These results indicate that both apoE2 and apoE4 isoforms contribute to Aβ deposition and future therapies targeting the apoE/Aβ interaction could produce favorable outcome in APOE ε2 and ε4 allele carriers.
-
Acta Neuropathol Commun · Jun 2014
CNS-targeted glucocorticoid reduces pathology in mouse model of amyotrophic lateral sclerosis.
Hallmarks of CNS inflammation, including microglial and astrocyte activation, are prominent features in post-mortem tissue from amyotrophic lateral sclerosis (ALS) patients and in mice overexpressing mutant superoxide dismutase-1 (SOD1G93A). Administration of non-targeted glucocorticoids does not significantly alter disease progression, but this may reflect poor CNS delivery. Here, we sought to discover whether CNS-targeted, liposomal encapsulated glucocorticoid would inhibit the CNS inflammatory response and reduce motor neuron loss. SOD1G93A mice were treated with saline, free methylprednisolone (MP, 10 mg/kg/week) or glutathione PEGylated liposomal MP (2B3-201, 10 mg/kg/week) and compared to saline treated wild-type animals. Animals were treated weekly with intravenous injections for 9 weeks from 60 days of age. Weights and motor performance were monitored during this period. At the end of the experimental period (116 days) mice were imaged using T2-weighted MRI for brainstem pathology; brain and spinal cord tissue were then collected for histological analysis. ⋯ In contrast to previous reports that employed free steroid preparations, CNS-targeted anti-inflammatory agent 2B3-201 (liposomal methylprednisolone) has therapeutic potential, reducing brainstem pathology in the SOD1G93A mouse model of ALS. 2B3-201 reduced neuronal loss and vacuolation in brainstem nuclei, and reduced activation preferentially in astrocytes compared with microglia. These data also suggest that other previously ineffective therapies could be of therapeutic value if delivered specifically to the CNS.