The journal of pain : official journal of the American Pain Society
-
Trigeminal nerve damage often leads to chronic pain syndromes including trigeminal neuralgia, a severely debilitating chronic orofacial pain syndrome. Options for treatment of neuropathic pain are limited in effectiveness and new approaches based on a better understanding of the underlying pathologies are required. Partial ligation has been shown to effectively mimic many of the qualities of human neuropathic pain syndromes. We have devised a mouse model of trigeminal neuralgia using a partial infraorbital nerve ligation (pIONL) that induces persistent pain behaviors and morphological changes in the brainstem. We found that the pIONL effectively induced mechanical allodynia lasting for more than 3 weeks. Cell proliferation (bromodeoxyuridine), activation of astrocytes and microglia in the ipsilateral caudal medulla, and persistent satellite cell reaction in the ipsilateral ganglion were observed. Neurochemical markers calcitonin gene-related peptide, substance P were decreased in medullary dorsal horn ipsilateral to the injury side, whereas substance P receptor NK1 expression was increased after 8 days. Nerve injury marker ATF3 was markedly increased in ipsilateral trigeminal ganglion neurons at 8 days after pIONL. The data indicate that partial trigeminal injury in mice produces many persistent anatomical changes in neuropathic pain, as well as mechanical allodynia. ⋯ This study describes the development of a new mouse model of trigeminal neuropathic pain. Our goal is to devise better treatments of trigeminal pain, and this will be facilitated by characterization of the underlying cellular and molecular neuropathological mechanisms in genetically designed mice.
-
Central nervous system lesions cause peripheral dysfunctions currently attributed to central cell death that compromises function of intact peripheral nerves. Injecting quisqualate (QUIS) into the rat spinal cord models spinal cord injury (SCI) and causes at-level scratching and self-injury. Such overgrooming was interpreted to model pain until patients with self-injurious scratching after SCI reported itch motivated scratching that was painless because of sensory loss. Because self-injurious scratching is difficult to explain by central mechanisms alone, we hypothesized that QUIS injections damage peripheral axons of at-level afferents. QUIS was injected into thoracic spinal cords of 18 Long-Evans rats. Animals were killed 3 days after overgrooming began or 14 days after injection. Spinal cord lesions were localized and DRG-immunolabeled for ATF-3. At-level and control skin samples were PGP9.5-immunabeled to quantify axons. Eighty-four percent of QUIS rats overgroomed. Skin in these regions had lost two-thirds of epidermal innervation as compared with controls (P < .001). Rats that overgroomed had 47% less axon-length than nongrooming rats (P = .006). The presence of ATF-3 immunolabeled neurons within diagnosis-related groups of QUIS rats indicated death of afferent cell bodies. Overgrooming after QUIS injections may not be due entirely to central changes. As in humans, self-injurious neuropathic scratching appeared to require loss of protective pain sensations in addition to peripheral denervation. ⋯ This study suggests that intramedullary injection of quisqualic acid in rats causes death of at-level peripheral as well as central neurons. Self-injurious dermatomal scratching that develops in spinal-injured rats may reflect neuropathic itch and loss of protective pain sensations.
-
Stress-induced hyperalgesia (SIH), a common clinical observation associated with multiple painful diseases including functional urinary disorders, presently has no mechanistic explanation. Using a footshock treatment, a classic stressor, to magnify physiological responses in a model of urinary bladder pain, we examined one potential group of mediators of SIH, the corticotropin-releasing factor (CRF)-related neuropeptides. Exposure to a footshock treatment produced bladder hypersensitivity in female Sprague-Dawley rats, manifested as significantly more vigorous visceromotor responses (VMRs) to urinary bladder distension (UBD) compared with rats that were exposed to a non-footshock treatment. This bladder hypersensitivity was significantly attenuated by blocking spinal CRF(2) receptors but not CRF(1) receptors. Furthermore, spinal administration of urocortin 2, a CRF(2) receptor agonist, augmented UBD-evoked VMRs in a way similar to what was observed after exposure to Footshock, an effect significantly attenuated by pretreatment with spinal aSVG30, a CRF(2) receptor antagonist. Surprisingly, neither spinal administration of CRF nor the CRF(1) receptor antagonist antalarmin had an effect on bladder nociceptive responses. The results of the present study not only provide further support for a role of stress in the exacerbation of bladder pain but also implicate spinal urocortins and their endogenous receptor, the CRF(2) receptor, as potential mediators of this effect. ⋯ This study presents evidence that spinal urocortins and CRF(2) receptors are involved in stress-induced hypersensitivity related to the urinary bladder. This provides a basis for investigating how urocortins mediate SIH, ultimately leading to more effective treatment options for patients with painful bladder syndromes as well as stress-exacerbated chronic pain.