The journal of pain : official journal of the American Pain Society
-
The purpose of our review is to evaluate critically the recent literature on racial and ethnic disparities in pain and to determine how far we have come toward reducing and eliminating disparities in pain. We examined peer-reviewed research articles published between 1990 and early 2009 that focused on racial and ethnic disparities in pain in the United States. The databases used were PubMed, Medline, Scopus, CINAHL, and PsycInfo. The probable causes of minority group disparities in pain are discussed, along with suggested strategies for eliminating pain-related disparities. This review reveals the persistence of racial and ethnic disparities in acute, chronic, cancer, and palliative pain care across the lifespan and treatment settings, with minorities receiving lesser quality pain care than non-Hispanic whites. Although health and health care disparities attract local, state, and federal attention, disparities in pain care continue to be missing from publicized public health agendas and health care reform plans. Ensuring optimal pain care for all is critically important from a public health and policy perspective. A robust research program on disparities in pain is needed, and the results must be successfully translated into practices and policies specifically designed to reduce and eliminate disparities in care. ⋯ This review evaluates the recent literature on racial and ethnic disparities in pain and pain treatment. Racial and ethnic disparities in acute pain, chronic cancer pain, and palliative pain care continue to persist. Rigorous research is needed to develop interventions, practices, and policies for eliminating disparities in pain.
-
Most of our knowledge about chronic musculoskeletal pain is based on cutaneous pain models. To test the hypothesis that animals develop chronic muscular hyperalgesia following intramuscular acidic saline injections, primary hyperalgesia within the gastrocnemius muscle was analyzed compared to secondary cutaneous hyperalgesia in the hind paw that develops following intramuscular acid saline injection. Two acidic saline (pH 4) injections were administrated into the gastrocnemius of female CF-1 mice. The results indicate that mice developed a robust hypersensitivity bilaterally in primary (gastrocnemius muscle) secondary (cutaneous hind paw) sites that lasted up to 2 weeks. In addition, primary hyperalgesia correlated well with levels of Fos expression. Fos expression patterns in the spinal cord were different for primary secondary site stimulation. Hind-paw palpation stimulated ipsilateral Fos expression in the superficial spinal laminae at L4/L5 levels, bilaterally in deep laminae at L2-L5 spinal levels. In contrast, gastrocnemius compression stimulated widespread Fos expression in all regions of the ipsilateral dorsal horn within L2-L6 spinal segments. These findings indicate that acidic saline injection induces primary hyperalgesia in muscle that the patterns of Fos expression in response to primary vs secondary stimulation are strikingly different. ⋯ This study assesses primary site muscular pain, which is the main complaint of people with musculoskeletal conditions, and identifies spinal patterns activated by noxious mechanical stimuli to the gastrocnemius. This study demonstrates approaches to test nociception arising from muscle aids in our understanding of spinal processing of primary secondary site hyperalgesia.
-
This pooled individual data (PID)-based meta-analysis collectively assessed the analgesic effect of repetitive transcranial magnetic stimulation (rTMS) on various neuropathic pain states based on their neuroanatomical hierarchy. Available randomized controlled trials (RCTs) were screened. PID was coded for age, gender, pain neuroanatomical origins, pain duration, and treatment parameters analyses. Coded pain neuroanatomical origins consist of peripheral nerve (PN); nerve root (NR); spinal cord (SC); trigeminal nerve or ganglion (TGN); and post-stroke supraspinal related pain (PSP). Raw data of 149 patients were extracted from 5 (1 parallel, 4 cross-over) selected (from 235 articles) RCTs. A significant (P < .001) overall analgesic effect (mean percent difference in pain visual analog scale (VAS) score reduction with 95% confidence interval) was detected with greater reduction in VAS with rTMS in comparison to sham. Including the parallel study (Khedr et al), the TGN subgroup was found to have the greatest analgesic effect (28.8%), followed by PSP (16.7%), SC (14.7%), NR (10.0%), and PN (1.5%). The results were similar when we excluded the parallel study with the greatest analgesic effect observed in TGN (33.0%), followed by SC (14.7%), PSP (10.5%), NR (10.0%), and PN (1.5%). In addition, multiple (vs single, P = .003) sessions and lower (>1 and < or =10 Hz) treatment frequency range (vs >10 Hz) appears to generate better analgesic outcome. In short, rTMS appears to be more effective in suppressing centrally than peripherally originated neuropathic pain states. ⋯ This is the first PID-based meta-analysis to assess the differential analgesic effect of rTMS on neuropathic pain based on the neuroanatomical origins of the pain pathophysiology and treatment parameters. The derived information serves as a useful resource in regards to treatment parameters and patient population selection for future rTMS-pain studies.