The journal of pain : official journal of the American Pain Society
-
Spinally released brain-derived nerve growth factor (BDNF) after nerve injury is essential to anatomic and functional changes in spinal noradrenergic and cholinergic systems, which are engaged or targeted by commonly used treatments for neuropathic pain. Since BDNF signals via tropomyosine receptor kinases (trks), we tested whether trk blockade by repeated spinal injection of the trk inhibitor K252a would reduce anatomical (spinal noradrenergic and cholinergic fiber density), functional (α2-adrenoceptor-mediated direct stimulation of spinal cholinergic terminals), and behavioral (anti-hypersensitivity from systemic gabapentin and spinal clonidine) plasticity, which depends on BDNF. Spinal K252a treatment did not alter hypersensitivity from spinal nerve ligation (SNL), but blocked the SNL-associated increase in dopamine-β-hydroxylase (DβH) fiber density in the spinal cord dorsal horn while reducing spinal choline acetyltransferase (ChAT)-immunoreactivity. K252a treatment also abolished the facilitatory effect of dexmedetomidine on KCl-evoked acetylcholine release in spinal cord synaptosomes and reduced the anti-hypersensitivity effects of oral gabapentin and spinal clonidine. These results suggest that spinal trk signaling is essential for the anatomic and functional plasticity in noradrenergic and cholinergic systems after nerve injury and consequently for the analgesia from drugs that rely on these systems. ⋯ Many drugs approved for neuropathic pain engage spinal noradrenergic and cholinergic systems for analgesia. This study demonstrates that spinal trk signaling after nerve injury is important to neuroplasticity of these systems, which is critical for the analgesic action of common treatments for neuropathic pain.
-
The expression of NF-κB in the spinal cord is associated with neuropathic pain. However, little is known about its expression beyond the spinal cord. Here we examined a spatial and temporal pattern of the NF-κB expression in both spinal and supraspinal regions. After chronic constriction injury (CCI) of the sciatic nerve, NF-κB (p65) expression was significantly increased in the ipsilateral spinal cord. In contrast, the NF-κB expression in the contralateral primary somatosensory cortex was decreased with no significant differences seen in the thalamus. In the contralateral anterior cingulate cortex, the NF-κB expression was increased significantly on day 14 as compared with the sham group. In the contralateral amygdala, the NF-κB expression showed a time-dependent downregulation after CCI, which became significant on day 14. MK-801 reduced nociceptive behaviors and reversed the direction of NF-κB expression. These results indicate that the CCI-induced expression of p65 NF-κB is both time-dependent and region-specific, in areas that process both sensory-discriminative and motivational-affective dimensions of pain. ⋯ This article presents a spatiotemporal mapping of the NF-κB expression in spinal and supraspinal regions after peripheral nerve injury. These findings point to an involvement of NF-κB beyond the spinal cord in both the sensory discriminative and emotional affective aspects of neuropathic pain processing.
-
There is lack of evidence that topical application of an anti-inflammatory reagent could reduce pain due to intervertebral foramen (IVF) inflammation (IVFI). We investigated analgesic effects and underlying mechanisms of topical application of a compound ibuprofen cream (CIC) onto the surface of back skin covering the inflamed L(5) IVF in a rat model. Repetitive CIC treatment (~.54 g each treatment daily for 5 consecutive days) significantly reduces severity and duration of IVFI-induced thermal hyperalgesia and mechanical allodynia by 80 to 100% and 50 to 66%, respectively. Electrophysiological studies and Western blot analysis demonstrated that CIC treatment significantly inhibited hyperexcitability of the inflamed dorsal root ganglion (DRG) neurons and upregulation of Nav1.7 and Nav1.8 protein, respectively. Pathological manifestations of the inflamed DRG were also markedly improved following CIC treatment. Further, in the inflamed DRGs, phosphorylation and expression of transcription factor NF-κB and pro-inflammatory enzyme cyclooxygenase-2 (COX-2) were significantly increased, while a cytokine IL-1β level was increased. IVFI-induced upregulation of these molecules was significantly inhibited by CIC treatment. This study provides evidence that an anti-inflammatory reagent can be used topically to suppress pain due to IVFI and/or DRG inflammation through inhibition of sensory neuron hyperexcitability and the immune and inflammatory responses. ⋯ This study suggests a convenient and safe clinical intervention for treating pain due to intervertebral foramen inflammation and similar syndromes.
-
Genetic variations in the catechol-O-methyltransferase (COMT) gene have been associated with experimental pain and risk of chronic pain development, but no studies have examined genetic predictors of neck pain intensity and other patient characteristics after motor vehicle collision (MVC). We evaluated the association between COMT genotype and acute neck pain intensity and other patient characteristics in 89 Caucasian individuals presenting to the emergency department (ED) after MVC. In the ED in the hours after MVC, individuals with a COMT pain vulnerable genotype were more likely to report moderate-to-severe musculoskeletal neck pain (76 versus 41%, RR = 2.11 (1.33-3.37)), moderate or severe headache (61 versus 33%, RR = 3.15 (1.05-9.42)), and moderate or severe dizziness (26 versus 12%, RR = 1.97 (1.19-3.21)). Individuals with a pain vulnerable genotype also experienced more dissociative symptoms in the ED, and estimated a longer time to physical recovery (median 14 versus 7 days, P = .002) and emotional recovery (median 8.5 versus 7 days, P = .038). These findings suggest that genetic variations affecting stress response system function influence the somatic and psychological response to MVC, and provide the first evidence of genetic risk for clinical symptoms after MVC. ⋯ The association of COMT genotype with pain symptoms, psychological symptoms, and recovery beliefs exemplifies the pleiotropic effects of stress-related genes, which may provide the biological substrate for the biopsychosocial model of post-MVC pain. The identification of genes associated with post-MVC symptoms may also provide new insights into pathophysiology.
-
Abnormalities of central pain processing play an important role in the pathophysiology of fibromyalgia (FM). The aims of the present study were to: 1) evaluate habituation of laser-evoked potentials (LEP) to repeated painful stimulation of 1 tender and 2 nontender points; and 2) determine correlations between LEP abnormalities and major clinical features of FM. Fourteen consecutive FM outpatients and 13 normal controls were included. LEP were recorded from scalp designations Fz, Cz, Pz, T3, and T4. The dorsum of the right hand, the right supra-orbital zone, and the right knee (a tender point in all patients) were subjected to repeated CO2 laser stimuli. For each stimulation site, recordings were obtained for 3 consecutive series of 20 stimuli. The 3 main findings in FM patients were: 1) an increased amplitude of vertex LEP and subjective laser pain; 2) decreased habituation of vertex LEP and subjective laser pain; and 3) a correlation between reduced N2 wave habituation and the severity of self-reported depressive symptoms. As with other chronic pain syndromes, the pathophysiology of FM may involve a generalized increase in the perception of painful stimuli and reduced habituation of the sensory cortex. ⋯ Reduced habituation of cortical responses to laser stimuli in FM patients suggests alterations in the pattern of cortical excitability. This is facilitated by depressive symptoms and abnormalities in central neurotransmission. These findings provide further support for the use of medications with effects on the central nervous system in the management of FM.