The journal of pain : official journal of the American Pain Society
-
Review Meta Analysis
Is Electrical Stimulation Effective in Preventing or Treating Delayed-Onset Muscle Soreness (DOMS) in Athletes and Untrained Adults? A Systematic Review with Meta-Analysis.
The effectiveness of electrical stimulation (ES) in preventing or treating delayed-onset muscle soreness (DOMS) and its effects on muscle recovery is unclear. The systematic review investigated the benefits or harms of ES on DOMS and muscle recovery. Databases (PubMed, Medline, CENTRAL, EMBASE, CINAHL, PsycINFO, PEDro, LILACS, SPORTDiscus) were searched up to March, 31st 2021 for randomized controlled trials (RCTs) of athletes or untrained adults with DOMS treated with ES and compared to placebo/sham (simulation or without ES), or control (no intervention). ⋯ PERSPECTIVES: No recommendations support the use of electrical stimulation in delayed-onset muscle soreness and muscle recovery in athletes and untrained adults. This means that electrical stimulation is not fruitful for this population according those protocols used. Therefore, unlikely that further randomized controlled trials with the same approach will yield promising results.
-
Review Meta Analysis
The relationship between pain-related psychological factors and maximal physical performance in low back pain: a systematic review and meta-analysis.
Theoretical frameworks explain how pain-related psychological factors may influence the physical performance. In this systematic review and meta-analysis, we evaluated the evidence regarding the relationship between the pain-related psychological factors and the maximal physical performance in patients with low back pain (LBP). Pubmed, Embase, CINAHL and Web of Science databases were searched from inception to May 2022. ⋯ PERSPECTIVE: Overall, small pooled correlation coefficients were shown between pain-related psychological factors and maximal physical performance in chronic LBP. Certainty of evidence was very low to low for all pain-related psychological factors other than pain-related fear. Future studies taking into account limitations of the current literature may therefore change these conclusions.
-
Randomized Controlled Trial
Neurofeedback training without explicit phantom hand movements and hand-like visual feedback to modulate pain: A randomized crossover feasibility trial.
Phantom limb pain is attributed to abnormal sensorimotor cortical representations, although the causal relationship between phantom limb pain and sensorimotor cortical representations suffers from the potentially confounding effects of phantom hand movements. We developed neurofeedback training to change sensorimotor cortical representations without explicit phantom hand movements or hand-like visual feedback. We tested the feasibility of neurofeedback training in fourteen patients with phantom limb pain. ⋯ These results suggested that the proposed neurofeedback training changed phantom hand representation and modulated pain without explicit phantom hand movements or hand-like visual feedback, thus showing the relation between the phantom hand representations and pain. PERSPECTIVE: Our work demonstrates the feasibility of using neurofeedback training to change phantom hand representation and modulate pain perception without explicit phantom hand movements and hand-like visual feedback. The results enhance the mechanistic understanding of certain treatments, such as mirror therapy, that change the sensorimotor cortical representation.
-
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. ⋯ Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
-
Although numerous studies have described botulinum toxin type A (BTX-A) efficacy against trigeminal neuralgia (TN), the underlying cellular mechanisms remain unclear. We have investigated cellular mechanisms that mediate the antinociceptive effect of BTX-A in a rodent model of TN produced by compression of the trigeminal nerve root (TNR). Anesthetized male Sprague-Dawley rats were fixed in a stereotaxic instrument and compression of the TNR was then achieved with a 4% agar solution. ⋯ These findings indicate that the antinociceptive effect of BTX-A is mediated via HIF-1α associated cytokines modulation in the TG and is therefore a potentially relevant treatment strategy for TN. PERSPECTIVE: The antinociceptive properties of BTX-A in a rat model of trigeminal neuralgia are mediated through the regulation of the HIF-1α associated cytokine pathway in the trigeminal ganglion. BTX-A is therefore a potentially effective treatment strategy for trigeminal neuralgia.