The journal of pain : official journal of the American Pain Society
-
Intensive interdisciplinary pain treatments (IIPT) have been developed to treat youth with unmanaged chronic pain and functional disability. Dysregulation of metabolites gamma-aminobutyric acid (GABA) and glutamate are thought to play a role in the chronification of pain due to imbalances in inhibition and excitation in adults. Using magnetic resonance spectroscopy (MRS), we investigated the effect of IIPT on GABA and Glx (glutamate + glutamine) in 2 pain-related brain regions: the left posterior insula (LPI) and the anterior cingulate cortex (ACC). ⋯ IIPT may decrease GABAergic inhibitory tone within the LPI, thereby promoting plasticity and contributing to improvements in physical outcomes with IIPT. PERSPECTIVE: Regional GABA changes are associated with a reduction in pain interference and improvement in physical function in youth following intensive pain rehabilitation. GABA may serve as a possible biomarker for IIPT; and may also further aid in the development of IIPT, and other treatments for chronic pain in youth.
-
Positive childhood experiences and chronic pain among children and adolescents in the United States.
Positive childhood experiences (PCEs) are associated with better mental and physical health outcomes and moderate the negative effects of adverse childhood experiences (ACEs). However, knowledge of the associations between PCEs and childhood chronic pain is limited. We conducted a cross-sectional analysis of 2019 to 2020 National Survey of Children's Health (NSCH) to evaluate associations between PCEs and childhood chronic pain. ⋯ Furthermore, PCEs was associated with reduced prevalence of chronic pain among children exposed to ACEs. PERSPECTIVE: This article estimates associations between survey-measured PCEs and pediatric chronic pain among children in the United States. Promoting PCEs could improve pediatric pain outcomes.
-
Depression and thermal hypersensitivity share pathogenic features and symptomology, but their pathophysiologic interactions have not been fully elucidated. Dopaminergic systems in the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus have been implicated in these conditions due to their antinociception and antidepression effects, although their specific roles and underlying mechanisms remain obscure. In this study, chronic unpredictable mild stress (CMS) was used to induce depression-like behaviors and thermal hypersensitivity in C57BL/6J (wild-type) or dopamine transporter promoter mice to establish a mouse model of pain and depression comorbidity. ⋯ Moreover, using a chemical genetics approach to activate or inhibit dopaminergic neurons in vlPAG ameliorated or exacerbated depression-like behaviors and thermal hypersensitivity, respectively, in dopamine transporter promoter-Cre CMS mice. Collectively these results demonstrated the specific role of vlPAG and dorsal raphe nucleus dopaminergic systems in the regulation of pain and depression comorbidity in mice. PERSPECTIVE: The current study provides insights into the complex mechanisms underlying thermal hypersensitivity induced by depression, and the findings suggest that pharmacological and chemogenetic modulation of dopaminergic systems in the vlPAG and dorsal raphe nucleus may be a promising therapeutic strategy to simultaneously mitigate pain and depression.
-
Higher sensitivity to pain is a common clinical symptom in postmenopausal females. The gut microbiota (GM) has recently been identified as participating in various pathophysiological processes and may change during menopause and contribute to multiple postmenopausal symptoms. Here, we investigated the possible correlation between GM alteration and allodynia in ovariectomized (OVX) mice. ⋯ Our findings provide new insights into the underlying mechanisms of postmenopausal allodynia, and suggest pain-related microbiota community as a promising therapeutic target. PERSPECTIVE: This article provided the evidence of gut microbiota playing essential roles in postmenopausal allodynia. This work intended to offer a guidance for further mechanism investigation into gut-brain axis and probiotics screening for postmenopausal chronic pain.
-
Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. ⋯ These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE. PERSPECTIVE: Our study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.