American journal of physiology. Cell physiology
-
Am. J. Physiol., Cell Physiol. · Feb 2012
Toll-like receptor deficiency worsens inflammation and lymphedema after lymphatic injury.
Mechanisms regulating lymphedema pathogenesis remain unknown. Recently, we have shown that lymphatic fluid stasis increases endogenous danger signal expression, and these molecules influence lymphatic repair (Zampbell JC, et al. Am J Physiol Cell Physiol 300: C1107-C1121, 2011). ⋯ Finally, TLR deficiency was associated with increased collagen type I deposition and increased transforming growth factor-β1 expression (P < 0.01, TLR4 and TLR9 KO), contributing to dermal fibrosis. In conclusion, TLR deficiency worsens tissue responses to lymphatic fluid stasis and is associated with decreased lymphangiogenesis, increased fibrosis, and reduced macrophage infiltration. These findings suggest a role for innate immune responses, including TLR signaling, in lymphatic repair and lymphedema pathogenesis.
-
Am. J. Physiol., Cell Physiol. · Feb 2012
Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. ⋯ We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.
-
Am. J. Physiol., Cell Physiol. · Feb 2012
Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.
Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. ⋯ Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure.