American journal of physiology. Cell physiology
-
Am. J. Physiol., Cell Physiol. · Aug 2014
Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension.
An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. ⋯ Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.
-
Am. J. Physiol., Cell Physiol. · Aug 2014
miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle.
Skeletal muscle atrophy occurs in response to a variety of conditions including chronic kidney disease, diabetes, cancer, and elevated glucocorticoids. MicroRNAs (miR) may play a role in the wasting process. Activation of the forkhead box O3 (FoxO3) transcription factor causes skeletal muscle atrophy in patients, animals, and cultured cells by increasing the expression of components of the ubiquitin-proteasome and autophagy-lysosome proteolytic systems. ⋯ Similarly, miR-182 was decreased 44% (P < 0.05) in the gastrocnemius muscle of rats injected with streptozotocin to induce diabetes compared with controls. Finally, miR-182 was present in exosomes isolated from the media of C2C12 myotubes and Dex increased its abundance. These data identify miR-182 as an important regulator of FoxO3 expression that participates in the control of atrophy-inducing genes during catabolic diseases.
-
Am. J. Physiol., Cell Physiol. · Aug 2014
Inhibition of Wnt/β-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury.
Idiopathic pulmonary fibrosis is a progressive lung disorder of unknown etiology. Previous studies have shown that aberrant activation of the Wnt/β-catenin signaling cascade occurs in lungs of patients with idiopathic pulmonary fibrosis. Given the important roles of the Wnt/β-catenin signaling pathway in the development of pulmonary fibrosis, we targeted this pathway for the intervention of pulmonary fibrosis with XAV939, a small molecule that specifically inhibits Tankyrase 1/2, eventually leading to the degradation of β-catenin and suppression of the Wnt/β-catenin signaling pathway. ⋯ The in vitro experiments demonstrated that XAV939 could promote the differentiation of BM-MSCs into an epithelium-like phenotype in the coculture system. We also found that XAV939 could inhibit the proliferation and myofibroblast differentiation of NIH/3T3 fibroblasts. This work supports that inhibition of the Wnt/β-catenin signaling pathway may be exploited for the treatment of idiopathic pulmonary fibrosis for which effective treatment strategies are still lacking.