American journal of physiology. Cell physiology
-
Am. J. Physiol., Cell Physiol. · Nov 2012
Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.
The maxi-anion channel plays a classically recognized role in controlling the membrane potential through the chloride conductance. It also has novel functions as a regulated pathway for the release of the anionic signaling molecules ATP and excitatory amino acids from cells subjected to osmotic perturbation, ischemia, or hypoxia. Because hemichannels formed by pannexins and connexins have been reported to mediate ATP release from a number of cell types, these hemichannels may represent the molecular correlate of the maxi-anion channel. ⋯ In contrast, maxi-anion channel activity was not affected by pannexin 1 antagonists and siRNAs against pannexins 1 and 2. Although a connexin 43-specific blocking peptide, Gap27, slightly suppressed hypotonicity-induced ATP release, maxi-anion channel activity was not affected by Gap27 or connexin 43-specific siRNA. Thus, it is concluded that the maxi-anion channel is a molecular entity distinct from pannexin 1, pannexin 2, and connexin 43, and that the maxi-anion channel and the hemichannels constitute separate pathways for swelling-induced ATP release in L929 cells.
-
Am. J. Physiol., Cell Physiol. · Oct 2012
Lipopolysaccharide prolongs action potential duration in HL-1 mouse cardiomyocytes.
Sepsis has deleterious effects on cardiac function including reduced contractility. We have shown previously that lipopolysaccharides (LPS) directly affect HL-1 cardiac myocytes by inhibiting Ca(2+) regulation and by impairing pacemaker "funny" current, I(f). We now explore further cellular mechanisms whereby LPS inhibits excitability in HL-1 cells. ⋯ LPS accordingly reduced outward currents measured with pipette Cs(+) substituted for K(+) to isolate I(Kr). E-4031 (1 μM) markedly inhibited I(Kr) in HL-1 cells and also increased action potential duration; however, the direct effects of E-4031 occurred minutes faster than the slow effects of LPS. We conclude that LPS increases action potential duration in HL-1 mouse cardiomyocytes by inhibition of I(Kr) and decreases their rate of firing by inhibition of I(Na.) This protracted time course points toward an intermediary metabolic event, which either decreases available mouse ether-a-go-go (mERG) and Na(+) channels or potentiates their inactivation.
-
Am. J. Physiol., Cell Physiol. · Aug 2012
Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals.
Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. ⋯ Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.
-
Am. J. Physiol., Cell Physiol. · Jul 2012
Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia.
Hydrogen sulfide (H(2)S) has recently been identified as a regulator of various physiological events, including vasodilation, angiogenesis, antiapoptotic, and cellular signaling. Endogenously, H(2)S is produced as a metabolite of homocysteine (Hcy) by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). Although Hcy is recognized as vascular risk factor at an elevated level [hyperhomocysteinemia (HHcy)] and contributes to vascular injury leading to renovascular dysfunction, the exact mechanism is unclear. ⋯ Upregulated matrix metalloproteinases-13 and downregulated tissue inhibitor of metalloproteinase-1 in HHcy were normalized by overexpression of triple genes. Together, these results suggest that H(2)S plays a key role in renovasculopathy during HHcy and is mediated through Akt/FoxO3 pathways. We conclude that conversion of Hcy to H(2)S by CBS, CSE, or 3MST triple gene therapy improves renovascular function in HHcy.
-
Am. J. Physiol., Cell Physiol. · Apr 2012
Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.
Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. ⋯ Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.