American journal of physiology. Endocrinology and metabolism
-
Am. J. Physiol. Endocrinol. Metab. · Oct 2003
Randomized Controlled Trial Clinical TrialGene expression profiles and protein balance in skeletal muscle of burned children after beta-adrenergic blockade.
Propranolol, a nonselective beta-blocker, has been shown effective in hypermetabolic burn patients by decreasing cardiac work, protein catabolism, and lipolysis. This study investigates the effect of propranolol on gene and protein expression changes in skeletal muscle of burned children by use of high-density oligonucleotide arrays to establish the genetic profiles and stable isotope technique to quantitate protein synthesis. Thirty-seven children (mean age 9.7 +/- 1.1 yr) were randomized into groups to receive placebo (n = 23) or propranolol (n = 14) titrated to reduce heart rate by 15%. ⋯ Comparison of 12,000 genes in burned children receiving placebo showed increased expression of two genes with time, whereas children receiving propranolol showed increased expression of nine genes with a decrease in five genes. We conclude that burned children receiving propranolol showed a significant upregulation in genes involved in muscle metabolism and downregulation of an important enzyme involved in gluconeogenesis and insulin resistance compared with burned children receiving placebo. The upregulation of genes involved in muscle metabolism correlates well with the increase in net protein balance across the leg.
-
Am. J. Physiol. Endocrinol. Metab. · Oct 2003
Clinical TrialRelative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans.
Splanchnic and renal net balance measurements indicate that lactate and glycerol may be important precursors for epinephrine-stimulated gluconeogenesis (GNG) in liver and kidney, but the effects of epinephrine on their renal and hepatic conversion to glucose in humans have not yet been reported. We therefore used a combination of renal balance and isotopic techniques in nine postabsorptive volunteers to measure systemic and renal GNG from these precursors before and during a 3-h infusion of epinephrine (270 pmol. kg-1. min-1) and calculated hepatic GNG as the difference between systemic and renal rates. ⋯ The increased renal uptake of lactate and glycerol was wholly due to their increased arterial concentrations, since their renal fractional extraction remained unchanged and renal blood flow decreased. We conclude that 1) lactate is the predominant precursor for epinephrine-stimulated GNG in both liver and kidney, 2) hepatic and renal GNG from lactate and glycerol are similarly sensitive to stimulation by epinephrine, and 3) epinephrine increases renal GNG from lactate and glycerol by increasing substrate availability and the gluconeogenic efficiency of the kidney.