American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2004
High-resolution visualization of oxygen distribution in the liver in vivo.
Microcirculatory failure after stress events results in mismatch in oxygen supply and demand. Determination of tissue oxygen distribution in vivo may help elucidate mechanisms of injury, but present methods have limited resolution. Male Sprague-Dawley rats were anesthetized, prepared for intravital microscopy, and received intravenously the oxygen-sensitive fluorescent dye Tris(1,10-phenanthroline)ruthenium(II) chloride hydrate [Ru(phen)3(2+)]. ⋯ Ethanol did not alter Ru(phen)3(2+) fluorescence but increased NADH fluorescence indicating independence of P(O2) and redox state imaging. Intravenous administration of Ru(phen)3(2+) for intravital videomicroscopy represents a new method to visualize the hepatic tissue P(O2). Combined with NADH autofluorescence, it provides additional information regarding the tissue redox state.