American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Mar 2007
Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome.
Early life stress has been implicated as a risk factor for irritable bowel syndrome (IBS). We studied the effect of neonatal maternal separation on the visceromotor response and the expression of c-fos, 5-HT, and its receptors/transporters along the brain-gut axis in an animal model of IBS. Male neonatal Sprague-Dawley rats were randomly assigned to a 3-h daily maternal separation (MS) or nonhandling (NH) on postnatal days 2-21. ⋯ Post-CRD only MS rats had significant increase in 5-HT content. Protein and mRNA expression levels of 5-HT3 receptors and 5-HT transporter were similar in MS and NH rats. Neonatal maternal separation stress predisposes rats to exaggerated neurochemical responses and visceral hyperalgesia in colon mimicking IBS.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Mar 2007
Isoflurane-induced acidosis depresses basal and PGE(2)-stimulated duodenal bicarbonate secretion in mice.
When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE(2)-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. ⋯ MAP was slightly higher after Na(2)CO(3) solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE(2)-stimulated DMBS as well as the responsiveness to PGE(2), effects prevented by a continuous infusion of Na(2)CO(3). When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na(2)CO(3) infusion to maintain a normal acid-base balance.