American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2013
Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure.
Recent studies demonstrate that mechanisms underlying gut barrier failure include systemic processes and less studied luminal processes. We thus tested the hypothesis that mucus layer oxidation is a component of trauma/hemorrhagic shock-induced gut injury and dysfunction. Male Sprague-Dawley rats underwent trauma/hemorrhagic shock. ⋯ Dimethyl sulfoxide ameliorated gut barrier loss, ROS-mediated changes to the mucus layer, and loss of total antioxidant capacity. There was no change in RNI-induced changes to the mucus layer. These results support the hypothesis that trauma/hemorrhagic shock leads to mucus damage and gut dysfunction through the generation of free radical species.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2013
Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver.
Recent studies have shown that, in cirrhosis, portal angiotensin-(1-7) [Ang-(1-7)] levels are increased and hepatic expression of angiotensin converting enzyme 2 (ACE2) and the Mas receptor are upregulated, but the effects of Ang-(1-7) on hepatic hemodynamics in cirrhosis have not been studied. This study investigated the effects of Ang-(1-7) on vasoconstrictor-induced perfusion pressure increases in cirrhotic rat livers. Ang II or the alpha 1 agonist methoxamine (MTX) were injected in the presence or absence of Ang-(1-7), and the perfusion pressure response was recorded. ⋯ D-Pro(7)-Ang-(1-7), a novel Ang-(1-7) receptor antagonist, completely abolished the vasodilatory effects of Ang-(1-7), as did inhibition of endothelial nitric oxide synthase (eNOS) with N(G)-nitro-L-arginine methyl-ester, guanylate cyclase blockade with ODQ and endothelium denudation. The functional inhibition by D-Pro(7)-Ang-(1-7) was accompanied by significant (P < 0.05) inhibition of eNOS phosphorylation. This study shows that Ang-(1-7) significantly inhibits intrahepatic vasoconstriction in response to key mediators of increased vascular and sinusoidal tone in cirrhosis via a receptor population present on the vascular endothelium that is sensitive to D-Pro(7)-Ang-(1-7) and causes activation of eNOS and guanylate cyclase-dependent NO signaling pathways.