American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Aug 2019
Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p.
Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and tumorigenesis of numerous malignant cancers. Microarray expression profiles were used to screen colorectal cancer (CRC)-related differentially expressed genes and lncRNAs, which revealed that insulin receptor substrate 1 (IRS1) and lncRNA plasmacytoma variant translocation 1 (PVT1) were highly expressed in CRC. This study aimed to investigate the regulatory role of lncRNA PVT1 in CRC. ⋯ This study suggests that lncRNA PVT1 might be a potential target of therapeutic strategies for CRC treatment. NEW & NOTEWORTHY This study mainly suggests that long noncoding (lnc)RNA plasmacytoma variant translocation 1 (PVT1) is a downregulated lncRNA in colorectal cancer (CRC), accelerating CRC progression. Strikingly, lncRNA PVT1 acts as a competitive endogenous RNA against microRNA (miR)-214-3p, whereas miR-214-3p targets insulin receptor substrate 1, which draws a comprehensive picture of the potential molecular mechanisms of lncRNA PVT1 in CRC.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Aug 2019
microRNA-33a prevents epithelial-mesenchymal transition, invasion, and metastasis of gastric cancer cells through the Snail/Slug pathway.
Invasion and metastasis are responsible for the majority of deaths in gastric cancer (GC). microRNA-33a (miR-33a) might function as a tumor suppressor in multiple cancers. Here, we describe the regulation and function of miR-33a in GC and mechanisms involved in epithelial-mesenchymal transition (EMT) and metastasis. First, GC tissues and adjacent normal tissues were collected. miR-33a upregulation or SNAI2 depletion on GC cells were introduced to assess the detailed regulatory mechanism of them. ⋯ This study suggests that miR-33a inhibited EMT, invasion, and metastasis of GC through the Snail/Slug signaling pathway by modulating SNAI2 expression. NEW & NOTEWORTHY miR-33a targets and inhibits the expression of SNAI2, overexpression of SNAI2 activates the Snail/Slug signaling pathway, the Snail/Slug signaling pathway promotes GC cell proliferation, invasion, and metastasis, and overexpression of miR-33a inhibits cell proliferation, invasion, and metastasis. This study provides a new therapeutic target for the treatment of GC.