American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2003
Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans.
The respective contribution of systemic vascular resistance (R) and total arterial compliance (C) to the arterial load remains to be established in humans. Effective arterial elastance (Ea), i.e., the left ventricular end-systolic pressure (LVESP)-over-stroke volume ratio, is a reliable estimate of arterial load. It is widely accepted that Ea mainly relates to mean aortic pressure (MAP) and thus to the R-to-T ratio (R/T ratio), where T is cycle length. ⋯ The sensitivity of Ea to a change in R/T was 2.5 times higher than to a similar change in 1/C in both normotensive and hypertensive adults. The LVESP was more strongly related to systolic aortic pressure (SAP; r2 = 0.94) than to MAP (r2 = 0.83), and LVESP matched 90% SAP (bias = 0 +/- 5mmHg). An alternative model of Ea is proposed, in which Ea is proportional to the heart rate x SAP product-over-cardiac index ratio whatever the MAP.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2003
Effects of hyperoxia on local and remote microcirculatory inflammatory response after splanchnic ischemia and reperfusion.
Splanchnic ischemia-reperfusion (I/R) causes tissue hypoxia that triggers local and systemic microcirculatory inflammatory responses. We evaluated the effects of hyperoxia in I/R induced by 40-min superior mesenteric artery (SMA) occlusion and 120-min reperfusion in four groups of rats: 1) control (anesthesia only), 2) sham operated (all surgical procedures without vascular occlusion; air ventilation), 3) SMA I/R and air, 4) SMA I/R and 100% oxygen ventilation started 10 min before reperfusion. Leukocyte rolling and adhesion in mesenteric microvessels, pulmonary microvascular blood flow velocity (BFV), and macromolecular (FITC-albumin) flux into lungs were monitored by intravital videomicroscopy. ⋯ Oxygen therapy attenuated the increase in mesenteric leukocyte rolling and adherence (P < 0.0001) and maintained microvascular patency at values not significantly different from sham-operated animals. Hyperoxia also attenuated the decrease in pulmonary capillary BFV and shear rates, reduced leukocyte infiltration in the lungs (P < 0.001), and prevented the increase in pulmonary macromolecular leak (P < 0.001), maintaining it at values not different from sham-operated animals. The data suggest that beneficial effects of normobaric hyperoxia in splanchnic I/R are mediated by attenuation of both local and remote inflammatory microvascular responses.