American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2005
Myocardial perfusion reserve in adults with cyanotic congenital heart disease.
In patients with cyanotic congenital heart disease (CCHD), a right-to-left shunt results in systemic hypoxemia. Systemic hypoxemia incites a compensatory erythrocytosis, which increases whole blood viscosity. We considered that these changes might adversely influence myocardial perfusion in CCHD patients. ⋯ Calculated oxygen delivery relative to rate-pressure product was higher in the patients [2.2 (SD 0.8) vs. 1.6 (SD 0.4) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the LV, P < 0.05, and 2.0 (SD 0.7) vs. 1.4 (SD 0.3) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the septum, P < 0.01]. Hyperemic perfusion measurements in CCHD patients did not differ from controls [LV, 1.67 (SD 0.60) vs. 1.95 ml x min(-1) x g(-1) (SD 0.46); septum, 1.44 (SD 0.56) vs. 1.98 ml x min(-1) x g(-1) (SD 0.69); RV, 1.56 (SD 0.56) vs. 1.65 ml x min(-1) x g(-1) (SD 0.64), P = not significant], and coronary vascular resistances were comparable [LV, 55 (SD 25) vs. 48 mmHg x ml(-1) x g x min (SD 16); septum, 67 (SD 35) vs. 50 mmHg x ml(-1) x g x min (SD 21); RV, 59 (SD 26) vs. 61 mmHg x ml(-1) x g x min (SD 27), P = not significant]. These findings suggest that adult CCHD patients have remodeling of the coronary circulation to compensate for the rheologic changes attending chronic hypoxemia.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2005
Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts.
Atrial natriuretic peptide (ANP) is reported to enhance vascular permeability in vivo. Our aim was to evaluate the impact of ANP on coronary extravasation of fluids and macromolecules and on the integrity of the endothelial glycocalyx. Isolated guinea pig hearts (n = 6/group) were perfused with Krebs-Henseleit buffer in a Langendorff mode. ⋯ These results indicate that the endothelial glycocalyx serves as a barrier to transmural exchange of fluid and colloid in the coronary vascular system. ANP causes rapid shedding of individual components of the glycocalyx and histologically detectable degradation. Thus the permeability-increasing effect of ANP may be at least partially related to changes in the integrity of the endothelial glycocalyx.