American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2006
The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta.
We examined the role for the JAK/STAT signaling pathway in acute opioid-induced cardioprotection (OIC) and whether opioid-induced glycogen synthase kinase-3beta (GSK-3 beta) inhibition is mediated by the JAK/STAT pathway. Rats underwent 30 min of ischemia and either 5 min or 2 h of reperfusion, followed by tissue isolation for molecular analysis or infarct size assessment, respectively. Rats were treated with vehicle, morphine (300 microg/kg), the delta-opioid agonist fentanyl isothiocynate (FIT, 10 microg/kg), or the GSK inhibitor SB-216763 (SB21, 600 microg/kg) 10 min before ischemia. ⋯ FIT stimulation of H9C2 cells also caused a time-dependent phosphorylation of STAT3, Akt, and GSK-3beta, and this effect was abrogated by AG-490. STAT3 phosphorylation was also dependent on phosphatidylinositol 3-kinase (PI3K) activation in both tissue and H9C2 cells. These data suggest that OIC occurs via the JAK2 regulation of PI3K pathway-dependent STAT3, Akt, and GSK-3 beta, with GSK-3 beta contributing a central role in acute OIC.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2006
Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity.
Responses to exchange transfusion with red blood cells (RBCs) containing methemoglobin (MetRBC) were studied in an acute isovolemic hemodiluted hamster window chamber model to determine whether oxygen content participates in the regulation of systemic and microvascular conditions during extreme hemodilution. Two isovolemic hemodilution steps were performed with 6% dextran 70 kDa (Dex70) until systemic hematocrit (Hct) was reduced to 18% (Level 2). A third-step hemodilution reduced the functional Hct to 75% of baseline by using either a plasma expander (Dex70) or blood adjusted to 18% Hct with all MetRBCs. ⋯ Wall shear rate and wall shear stress decreased in arterioles and venules for Dex70 and did not change for MetRBC or rRBC. Increased MAP and shear stress-mediated factors could be the possible mechanisms that improved perfusion flow and FCD after exchange for MetRBC. Thus the fall in systemic and microvascular conditions during extreme hemodilution with low-viscosity plasma expanders seems to be, in part, from the decrease in blood viscosity independent of the reduction in oxygen content.