American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2007
Impairments in microvascular reactivity are related to organ failure in human sepsis.
Severe sepsis is a systemic inflammatory response to infection resulting in acute organ dysfunction. Vascular perfusion abnormalities are implicated in the pathology of organ failure, but studies of microvascular function in human sepsis are limited. We hypothesized that impaired microvascular responses to reactive hyperemia lead to impaired oxygen delivery relative to the needs of tissue and that these impairments would be associated with organ failure in sepsis. ⋯ The rate of increase in StO2 during reactive hyperemia was significantly slower in septic subjects than in controls; this impairment was accentuated in those with more organ failure. We conclude that organ dysfunction in severe sepsis is associated with dysregulation of microvascular oxygen balance. NIRS measurements of skeletal muscle microvascular perfusion and reactivity may provide important information about sepsis and serve as endpoints in future therapeutic interventions aimed at improving the microcirculation.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2007
Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress.
Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. ⋯ Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2007
Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors.
Angiotensin (ANG) II exerts a negative modulation on insulin signal transduction that might be involved in the pathogenesis of hypertension and insulin resistance. ANG-(1-7), an endogenous heptapeptide hormone formed by cleavage of ANG I and ANG II, counteracts many actions of ANG II. In the current study, we have explored the role of ANG-(1-7) in the signaling crosstalk that exists between ANG II and insulin. ⋯ Acute in vivo insulin-induced cardiac Akt phosphorylation was inhibited by ANG II. Interestingly, coadministration of insulin with an equimolar mixture of ANG II and ANG-(1-7) reverted this inhibitory effect. On the basis of our present results, we postulate that ANG-(1-7) could be a positive physiological contributor to the actions of insulin in heart and that the balance between ANG II and ANG-(1-7) could be relevant for the association among insulin resistance, hypertension, and cardiovascular disease.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2007
Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. ⋯ Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2007
Continuous inhalation of carbon monoxide induces right ventricle ischemia and dysfunction in rats with hypoxic pulmonary hypertension.
We aimed to investigate the toxicity of carbon monoxide (CO) in rats with right ventricle (RV) remodeling induced by hypoxic pulmonary hypertension (PHT). A group of Wistar rats was exposed to 3-wk hypobaric hypoxia (H). A second group was exposed to 50 ppm CO for 1 wk (CO). ⋯ PHT and RV hypertrophy were still present in the H+CO group, and fibroses localized in the RV were detected. Similar lesions were observed in an additional group exposed simultaneously to hypoxia and 50 ppm CO over 3 wk. We demonstrated that rats with established PHT were more sensitive to CO, which dramatically alters the RV adaptive response to PHT, leading to ischemic lesions.