American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Mar 2009
Phospholamban overexpression in rabbit ventricular myocytes does not alter sarcoplasmic reticulum Ca transport.
Phospholamban has been suggested to be a key regulator of cardiac sarcoplasmic reticulum (SR) Ca cycling and contractility and a potential therapeutic target in restoring the depressed Ca cycling in failing hearts. Our understanding of the function of phospholamban stems primarily from studies in genetically altered mouse models. To evaluate the significance of this protein in larger mammalian species, which exhibit Ca cycling properties similar to humans, we overexpressed phospholamban in adult rabbit cardiomyocytes. ⋯ These apparent differences between phospholamban overexpression in rabbit compared with previous findings in the mouse may be due to a significantly higher (1.5-fold) endogenous phospholamban-to-sarco(endo)plasmic reticulum Ca-ATPase (SERCA) 2a ratio and potential functional saturation of SERCA2a by phospholamban in rabbit cardiomyocytes. The findings suggest that important species-dependent differences in phospholamban regulation of SERCA2a occur. In larger mammals, a higher fraction of SERCA2a pumps are regulated by phospholamban, and this may influence therapeutic strategies to enhance cardiac contractility and functional cardiac reserve.
-
Am. J. Physiol. Heart Circ. Physiol. · Mar 2009
Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism.
Hydrogen sulfide (H(2)S) is one of three endogenous gases, along with carbon monoxide (CO) and nitric oxide (NO), that exert a variety of important vascular actions in vivo. Although it has been demonstrated that CO or NO can trigger the development of a preconditioned phenotype in postischemic tissues, it is unclear whether H(2)S may also induce protection in organs subsequently exposed to ischemia-reperfusion (I/R). In light of these observations, we postulated that preconditioning with the exogenous H(2)S donor sodium hydrosulfide (NaHS-PC) would inhibit leukocyte rolling (LR) and adhesion (LA) induced by I/R. ⋯ Whereas the reduction in LA induced by antecedent NaHS was attenuated by pharmacological inhibition of NOS or p38 MAPK in WT mice, the antiadhesive effect of NaHS was still evident in eNOS(-/-) mice. Thus NaHS-PC prevents LR and LA by triggering the activation of an eNOS- and p38 MAPK-dependent mechanism. However, the role of eNOS in the antiadhesive effect of NaHS-PC was less prominent than its effect to reduce LR.
-
Am. J. Physiol. Heart Circ. Physiol. · Mar 2009
PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway.
Several clinical studies have shown the beneficial cardiovascular effects of fibrates in patients with diabetes and insulin resistance. The ligands of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) reduce ischemia-reperfusion injury in nondiabetic animals. We hypothesized that the activation of PPAR-alpha would exert cardioprotection in type 2 diabetic Goto-Kakizaki (GK) rats, involving mechanisms related to nitric oxide (NO) production via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. ⋯ The expression of Akt, Akt Ser473, and Akt Thr308 was also increased in the ischemic myocardium from GK rats following WY. Myocardial nitrite/nitrate levels were reduced in GK rats (P < 0.05). The results suggest that PPAR-alpha activation protects the type 2 diabetic rat myocardium against ischemia-reperfusion injury via the activation of the PI3K/Akt and NO pathway.