American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Jun 2013
Middle cerebral O₂ delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine.
The modified Oxford maneuver is the reference standard for assessing arterial baroreflex function. The maneuver comprises a systemic bolus injection of 100 μg sodium nitroprusside (SNP) followed by 150 μg phenylephrine (PE). On the one hand, this results in an increase in oxyhemoglobin and total hemoglobin followed by a decrease within the cerebral sample volume illuminated by near-infrared spectroscopy (NIRS). ⋯ SNP increased ΔQa by 0.36 ± .03 μmol·kg(-1)·s(-1) (21.6 μmol·kg(-1)·min(-1)), whereas CBFv decreased from 71 ± 2 to 62 ± 2 cm/s. PE decreased ΔQa by 0.27 ± .2 μmol·kg(-1)·s(-1) (16.2 μmol·kg(-1)·min(-1)), whereas CBFv increased to 75 ± 3 cm/s. These results are consistent with dilation of the MCA by SNP and constriction by PE.
-
Am. J. Physiol. Heart Circ. Physiol. · Jun 2013
Muscle metaboreflex activation speeds the recovery of arterial blood pressure following acute hypotension in humans.
It has been suggested that the arterial baroreflex and muscle metaboreflex are both activated during heavy exercise and that they interact to modulate primary cardiovascular reflex responses. This proposed interaction and its consequences are not fully understood, however. The purpose of present study was to test our hypothesis that dynamic arterial baroreflex-mediated cardiovascular responses to acute systemic hypotension in humans are augmented when the muscle metaboreflex is active and that this results in a faster recovery of arterial blood pressure. ⋯ In addition, arterial baroreflex-mediated peripheral vasoconstriction was augmented during PEMI, as evidenced by a near doubling of the rate of recovery of MAP and TVC. These results show that when the muscle metaboreflex is activated in humans, arterial baroreflex-mediated peripheral vasoconstriction elicited in response to acute hypotension is augmented, which halves the time needed for MAP recovery. Such modulation of baroreflex function would be advantageous for maintaining an elevated arterial blood pressure during activation of the muscle metaboreflex.