American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Jun 2015
Randomized Controlled TrialExposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects.
Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. ⋯ Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure.
-
Am. J. Physiol. Heart Circ. Physiol. · Jun 2015
A novel pharmacological strategy by PTEN inhibition for improving metabolic resuscitation and survival after mouse cardiac arrest.
Sudden cardiac arrest (SCA) is a leading cause of death in the United States. Despite return of spontaneous circulation, patients die due to post-SCA syndrome that includes myocardial dysfunction, brain injury, impaired metabolism, and inflammation. No medications improve SCA survival. ⋯ Moreover, VO improved cardiac bioenergetic recovery. We concluded that pharmacologic PTEN inhibition enhances Akt activation, improving metabolic, cardiovascular, and neurologic recovery with increased survival after SCA. PTEN inhibitors may be a novel pharmacologic strategy for treating SCA.