American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Jan 2007
Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR.
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. ⋯ The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.
-
Am. J. Physiol. Heart Circ. Physiol. · Dec 2006
A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle.
The recent experiments in Hu et al. (Am J Physiol Heart Circ Physiol 279: H1724-H1736, 2000) and Adamson et al. (J Physiol 557: 889-907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281-304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. ⋯ A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips's original 1-D analysis of the matrix layer (J Physiol 388: 421-435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick (Exp Physiol 76: 825-857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2006
Comparative StudyEffects of Type II diabetes on capillary hemodynamics in skeletal muscle.
Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163-175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. ⋯ Sarcomere length was set to a physiological length ( approximately 2.7 mum) to ensure that muscle stretching did not alter capillary hemodynamics; d(c) was not different between control and GK rats (P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 +/- 3; GK: 66 +/- 5 %), Hct(cap), V(RBC), F(RBC), and O(2) delivery per unit of muscle were all decreased in GK rats (P < 0.05). This study indicates that Type II diabetes reduces both convective O(2) delivery and diffusive O(2) transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O(2) exchange characteristic of Type II diabetic patients.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2006
Comparative StudyCascade model of ventricular-arterial coupling and arterial-cardiac baroreflex function for cardiovascular variability in humans.
Cardiovascular variability reflects autonomic regulation of blood pressure (BP) and heart rate (HR). However, systolic BP (SBP) variability also may be induced by fluctuations in stroke volume through left ventricular end-diastolic pressure (LVEDP) variability via dynamic ventricular-arterial coupling during respiration. We hypothesized that dynamic ventricular-arterial coupling is modulated by changes in left ventricular compliance associated with altered preload and that a cascade control mechanism of ventricular-arterial coupling with arterial-cardiac baroreflex function contributes to the genesis of cardiovascular variability at the respiratory frequency. ⋯ Gain LVEDP-HR was smaller by 40% (P = 0.04) during hypervolemia than during hypovolemia, leading to a reduction in spectral power of HR variability by 45% (P = 0.08). We conclude that dynamic ventricular-arterial coupling gain is reduced during hypervolemia because of a decrease in left ventricular compliance. A cascade model of ventricular-arterial coupling with the arterial-cardiac baroreflex contributes to the genesis of cardiovascular variability at the respiratory frequency.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2006
Comparative StudyPlasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions.
The hamster window chamber model was used to study systemic and microvascular hemodynamic responses to extreme hemodilution with low- and high-viscosity plasma expanders (LVPE and HVPE, respectively) to determine whether plasma viscosity is a factor in homeostasis during extreme anemic conditions. Moderated hemodilution was induced by two isovolemic steps performed with 6% 70-kDa dextran until systemic hematocrit (Hct) was reduced to 18% (level 2). In a third isovolemic step, hemodilution with LVPE (6% 70-kDa dextran, 2.8 cP) or HVPE (6% 500-kDa dextran, 5.9 cP) reduced Hct to 11%. ⋯ Functional capillary density was significantly higher for HVPE [87% (SD 7) of baseline] than for LVPE [42% (SD 11) of baseline]. Increases in mean arterial blood pressure, CO, and shear stress-mediated factors could be responsible for maintaining organ and microvascular perfusion after exchange with HVPE compared with LVPE. Microhemodynamic data corresponded to microsphere-measured perfusion data in vital organs.