American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Jan 2021
ReviewSex differences in COVID-19: candidate pathways, genetics of ACE2, and sex hormones.
Biological sex is increasingly recognized as a critical determinant of health and disease, particularly relevant to the topical COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Epidemiological data and observational reports from both the original SARS epidemic and the most recent COVID-19 pandemic have a common feature: males are more likely to exhibit enhanced disease severity and mortality than females. Sex differences in cardiovascular disease and COVID-19 share mechanistic foundations, namely, the involvement of both the innate immune system and the canonical renin-angiotensin system (RAS). ⋯ Therefore, the relationship between cardiovascular disease and COVID-19 is critically dependent on the loss of membrane ACE2 by ADAM17-mediated proteolytic cleavage. This article explores potential mechanisms involved in COVID-19 that may contribute to sex-specific susceptibility focusing on the innate immune system and the RAS, namely, genetics and sex hormones. Finally, we highlight here the added challenges of gender in the COVID-19 pandemic.
-
Am. J. Physiol. Heart Circ. Physiol. · Jul 2016
ReviewMicrocirculatory dysfunction in sepsis: pathophysiology, clinical monitoring, and potential therapies.
Abnormal microvascular perfusion, including decreased functional capillary density and increased blood flow heterogeneity, is observed in early stages of the systemic inflammatory response to infection and appears to have prognostic significance in human sepsis. It is known that improvements in systemic hemodynamics are weakly correlated with the correction of microcirculatory parameters, despite an appropriate treatment of macrohemodynamic abnormalities. ⋯ Fortunately, some bedside diagnostic methods and therapeutic options are specifically directed to the assessment and treatment of microcirculatory changes. In the present review we discuss fundamental aspects of septic microcirculatory abnormalities, including pathophysiology, clinical monitoring, and potential therapies.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2015
ReviewBlood flow restriction training and the exercise pressor reflex: a call for concern.
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. ⋯ That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2013
ReviewRole of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics.
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. ⋯ The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
-
Am. J. Physiol. Heart Circ. Physiol. · Oct 2012
ReviewThe history of matrix metalloproteinases: milestones, myths, and misperceptions.
Since the discovery of tadpole collagenase in 1962, the matrix metalloproteinase (MMP) family has emerged as a significant proteinase group with recognized effects on the cardiovascular system. Over the last 40 years, many milestones have been achieved, from the identification of the first MMP, to the generation of the first MMP cDNA clone and null mouse, to the clinical approval of the first MMP inhibitor. ⋯ In this review, we will discuss the major milestones of MMP research, as well as review the misinterpretations and misperceptions that have evolved. Clarifying the confusions and dispelling the myths will both provide a better understanding of MMP properties and functions and focus the cardiovascular field on the outstanding research questions that need to be addressed.