American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Oct 2005
Clinical TrialRight and left ventricular adaptation to hypoxia: a tissue Doppler imaging study.
Hypoxia has been reported to alter left ventricular (LV) diastolic function, but associated changes in right ventricular (RV) systolic and diastolic function remain incompletely documented. We used echocardiography and tissue Doppler imaging to investigate the effects on RV and LV function of 90 min of hypoxic breathing (fraction of inspired O(2) of 0.12) compared with those of dobutamine to reproduce the same heart rate effects without change in pulmonary vascular tone in 25 healthy volunteers. Hypoxia and dobutamine increased cardiac output and tricuspid regurgitation velocity. ⋯ Regional longitudinal wall motion analysis revealed that S, systolic strain, and strain rate were not affected by hypoxia and increased by dobutamine on the RV free wall and interventricular septum but increased by both dobutamine and hypoxia on the LV lateral wall. Hypoxia increased the isovolumic relaxation time related to RR interval (IRT/RR) at both annuli, delayed the onset of the E wave at the tricuspid annulus, and decreased the mitral and tricuspid inflow and annuli E/A ratio. We conclude that hypoxia in normal subjects is associated with altered diastolic function of both ventricles, improved LV systolic function, and preserved RV systolic function.
-
Am. J. Physiol. Heart Circ. Physiol. · Oct 2005
Hepatic venoconstriction is involved in anaphylactic hypotension in rats.
We determined the roles of liver and splanchnic vascular bed in anaphylactic hypotension in anesthetized rats and the effects of anaphylaxis on hepatic vascular resistances and liver weight in isolated perfused rat livers. In anesthetized rats sensitized with ovalbumin (1 mg), an intravenous injection of 0.6 mg ovalbumin caused not only a decrease in systemic arterial pressure from 120 +/- 9 to 43 +/- 10 mmHg but also an increase in portal venous pressure that persisted for 20 min after the antigen injection (the portal hypertension phase). The elimination of the splanchnic vascular beds, by the occlusions of the celiac and mesenteric arteries, combined with total hepatectomy attenuated anaphylactic hypotension during the portal hypertension phase. ⋯ Using the double-occlusion technique to estimate the hepatic sinusoidal pressure, presinusoidal (R(pre)) and postsinusoidal (R(post)) resistances were calculated. An injection of antigen (0.015 mg) caused venoconstriction characterized by an almost selective increase in R(pre) rather than R(post) and liver weight loss. Taken together, these results suggest that liver and splanchnic vascular beds are involved in anaphylactic hypotension presumably because of anaphylactic presinusoidal contraction-induced portal hypertension, which induced splanchnic congestion resulting in a decrease in circulating blood volume and thus systemic arterial hypotension.
-
Am. J. Physiol. Heart Circ. Physiol. · Sep 2005
Pyruvate-fortified cardioplegia suppresses oxidative stress and enhances phosphorylation potential of arrested myocardium.
Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. ⋯ Myocardial [PCr]/([Cr][P(i)]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][P(i)]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2005
Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload.
Atrial (ANP) and brain (BNP) natriuretic peptides are hormones of myocardial cell origin. These hormones bind to the natriuretic peptide A receptor (NPRA) throughout the body, stimulating cGMP production and playing a key role in blood pressure control. Because NPRA receptors are present on cardiomyocytes, we hypothesized that natriuretic peptides may have direct autocrine or paracrine effects on cardiomyocytes or adjacent cardiac cells. ⋯ However, systolic blood pressure, myocardial cGMP, log plasma ANP levels, and ventricular structure and function were similar in wild-type (WT-NPRA) and DN-NPRA mice. In the presence of pressure overload, myocardial cGMP levels were reduced, and ventricular hypertrophy, fibrosis, filling pressures, and mortality were increased in DN-NPRA compared with WT-NPRA mice. In addition to their hormonal effects, endogenous natriuretic peptides exert physiologically relevant autocrine and paracrine effects via cardiomyocyte NPRA receptors to modulate cardiac hypertrophy and fibrosis in response to pressure overload.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2005
Role of endogenous nitric oxide in endotoxin-induced alteration of hypoxic pulmonary vasoconstriction in mice.
Pulmonary vasoconstriction in response to alveolar hypoxia (HPV) is frequently impaired in patients with sepsis or acute respiratory distress syndrome or in animal models of endotoxemia. Pulmonary vasodilation due to overproduction of nitric oxide (NO) by NO synthase 2 (NOS2) may be responsible for this impaired HPV after administration of endotoxin (LPS). We investigated the effects of acute nonspecific (N(G)-nitro-L-arginine methyl ester, L-NAME) and NOS2-specific [L-N6-(1-iminoethyl)lysine, L-NIL] NOS inhibition and congenital deficiency of NOS2 on impaired HPV during endotoxemia. ⋯ Analysis of the pulmonary vascular P-Q relationship suggested that the HPV response may consist of different components that are specifically NOS isoform modulated in untreated and LPS-treated mice. These results demonstrate in a murine model of endotoxemia that NOS2-derived NO production is critical for LPS-mediated development of impaired HPV. Furthermore, impaired HPV during endotoxemia may be at least in part mediated by mechanisms other than simply pulmonary vasodilation by NOS2-derived NO overproduction.