American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2003
Aberrant lung structure, composition, and function in a murine model of Hermansky-Pudlak syndrome.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. ⋯ Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2003
Protein C and thrombomodulin in human acute lung injury.
Decreased circulating protein C and increased circulating thrombomodulin are markers of the prothrombotic, antifibrinolytic state associated with poor outcomes in sepsis but have not been measured in patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome). We measured circulating and intra-alveolar protein C and thrombomodulin in 45 patients with ALI/ARDS from septic and nonseptic causes and correlated the levels with clinical outcomes. Plasma protein C levels were lower in ALI/ARDS compared with normal. ⋯ Both epithelial cell types released thrombomodulin into the media. In summary, the protein C system is markedly disrupted in patients with ALI/ARDS from both septic and nonseptic causes. The protein C system may be a potential therapeutic target in patients with ALI/ARDS.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2003
Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice.
Patients with acute respiratory distress syndrome are at increased risk for developing multiorgan system dysfunction. The goal of this study was to establish an in vivo murine model to assess the differential effects of ventilation-protective strategies on the development of acute lung injury and systemic organ inflammation. C57B/6 mice were randomized to mechanical ventilation (MV) with conventional, high (17 ml/kg) or protective, low (6 ml/kg) tidal volume (VT) after intratracheal hydrochloric acid or no intervention. ⋯ After acid aspiration, mice ventilated with high VT manifested lung injury and increased IL-6 and VEGFR2 in lung, liver, and kidney, whereas VEGF increased only in liver and kidney. MV with low VT after acid aspiration attenuated lung injury, both IL-6 and VEGFR2 expression in lung and systemic organs, and hepatic, but not renal, increased VEGF. Our data suggest that MV strategy has differential effects on systemic inflammatory changes and thus may selectively predispose to systemic organ dysfunction.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2003
Systemic arteriovenous fistula leads to pulmonary artery remodeling and abnormal vasoreactivity in the fetal lamb.
Several cases of systemic arteriovenous fistula diagnosed in the human fetus have been associated with the postnatal development of persistent pulmonary hypertension. The aim of this study was to determine the effects of a prenatally created systemic arteriovenous fistula on the structure and reactivity of the pulmonary circulation in the fetal lamb. A fistula between the jugular vein and carotid artery was created in fetal lambs at 119-124 days of gestation. ⋯ In vitro organ bath studies on pulmonary arterial rings showed impaired endothelium-dependent relaxation in the fistula group compared with controls. However, endothelial nitric oxide synthase protein expression was similar in both groups, whereas endothelium-independent relaxation to sodium nitroprusside was greater in the fistula group compared with controls. A systemic arteriovenous fistula leads to both structural and functional alteration of the pulmonary vasculature, which might lead to the development of persistent pulmonary hypertension after birth.