American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Feb 2007
17beta-Estradiol inhibits keratinocyte-derived chemokine production following trauma-hemorrhage.
Neutrophil infiltration is a key step in the development of organ dysfunction following trauma-hemorrhage (T-H). Although we have previously shown that 17beta-estradiol (E2) prevents neutrophil infiltration and organ damage following T-H, the mechanism by which E2 inhibits neutrophil transmigration remains unknown. We hypothesized that E2 prevents neutrophil infiltration via modulation of keratinocyte-derived chemokine (KC), a major attractant for neutrophils. ⋯ Treatment with E2 decreased systemic levels and restored Kupffer cell production of KC, TNF-alpha, and IL-6, as well as KC gene expression and protein in the lung. This was accompanied with a decrease in neutrophil infiltration and edema formation in the lung. These results suggest that E2 prevents lung neutrophil infiltration and organ damage in part by decreasing KC during posttraumatic immune response.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Feb 2007
Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis.
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. ⋯ Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.