American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jan 2008
Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension.
Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. ⋯ In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow.