American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2009
Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome.
Coagulation and fibrinolysis abnormalities are observed in acute lung injury (ALI) in both human disease and animal models and may contribute to ongoing inflammation in the lung. Tissue factor (TF), the main initiator of the coagulation cascade, is upregulated in the lungs of patients with ALI/acute respiratory distress syndrome (ARDS) and likely contributes to fibrin deposition in the air space. The mechanisms that govern TF upregulation and activation in the lung are not well understood. ⋯ These MPs are enriched for TF, have procoagulant activity, and likely originate from the alveolar epithelium [as measured by elevated levels of RAGE (receptor for advanced glycation end products) in ARDS MPs compared with hydrostatic MPs]. Furthermore, alveolar epithelial cells in culture release procoagulant TF MPs in response to a proinflammatory stimulus. These findings suggest that alveolar epithelial-derived MPs are one potential source of TF procoagulant activity in the air space in ARDS and that epithelial MP formation and release may represent a unique therapeutic target in ARDS.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2009
Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats.
Whether inhaled nitric oxide (iNO) prevents the development of bronchopulmonary dysplasia (BPD) in premature infants is controversial. In adult rats, bleomycin (Bleo) induces lung fibrosis and pulmonary hypertension, but the effects of Bleo on the developing lung and iNO treatment on Bleo-induced neonatal lung injury are uncertain. Therefore, we sought to determine whether early and prolonged iNO therapy attenuates changes of pulmonary vascular and alveolar structure in a model of BPD induced by Bleo treatment of neonatal rats. ⋯ In each iNO treatment group, iNO decreased RVH (P < 0.01) and wall thickness (P < 0.01) and restored vessel density after Bleo (P < 0.05). iNO therapy improved alveolarization for each treatment group after Bleo; however, the values remained abnormal compared with controls. Prolonged iNO treatment had greater effects on lung structure after bleomycin than late treatment alone. We conclude that Bleo induces lung structural changes that mimic BPD in neonatal rats, and that early and prolonged iNO therapy prevents right ventricle hypertrophy and pulmonary vascular remodeling and partially improves lung structure.