American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2009
Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema.
Chronic inflammation, imbalance of proteolytic and anti-proteolytic activities, oxidative stress, and apoptosis of lung structural cells contribute to the pathogenesis of COPD. Prostacyclin protects cells against apoptosis, has anti-inflammatory properties, partially prevents cigarette smoke extract (CSE)-induced apoptosis of the pulmonary endothelium, and thus may be relevant in the pathogenesis of emphysema. We determined whether a synthetic stable prostacyclin analog, beraprost sodium (BPS), attenuates the development of CSE-induced emphysema and elucidated the molecular mechanisms involved in its effect. ⋯ BPS introduces all these events, probably by activating cAMP signaling through acting specific prostacyclin receptors. In conclusion, BPS protects against the development of CSE-induced emphysema by attenuating apoptosis, inhibiting proteolytic enzyme activity, reducing inflammatory cytokine levels, and augmenting antioxidant activity. BPS may potentially represent a new therapeutic option in the prevention of emphysema in humans in prospect.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2009
Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) induces the vascular and hemodynamic changes of pulmonary hypertension.
Pulmonary hypertension (PH) is a serious disease of multiple etiologies mediated by hypoxia, immune stimuli, and elevated pulmonary pressure that leads to vascular thickening and eventual right heart failure. In a chronic hypoxia model of PH, we previously reported the induction of a novel pleiotropic cytokine, hypoxia-induced mitogenic factor (HIMF), that exhibits mitogenic, vasculogenic, contractile, and chemokine properties during PH-associated vascular remodeling. To examine the role of HIMF in hypoxia-induced vascular remodeling, we performed in vivo knockdown of HIMF using short hairpin RNA directed at rat HIMF in the chronic hypoxia model of PH. ⋯ To demonstrate a direct role for HIMF in the mechanism of PH development, we performed HIMF-gene transfer into the lungs of rats using a HIMF-expressing adeno-associated virus (AAV). AAV-HIMF alone caused development of PH similar to that of chronic hypoxia with increased mean pulmonary artery pressure and pulmonary vascular resistance, right heart hypertrophy, and neomuscularization and thickening of small pulmonary arterioles. The findings suggest that HIMF represents a critical cytokine-like growth factor in the development of PH.