American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Aug 2009
Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus.
Impaired nitric oxide-cGMP signaling contributes to severe pulmonary hypertension after birth, which may in part be due to decreased soluble guanylate cyclase (sGC) activity. Cinaciguat (BAY 58-2667) is a novel sGC activator that causes vasodilation, even in the presence of oxidized heme or heme-free sGC, but its hemodynamic effects have not been studied in the perinatal lung. We performed surgery on eight fetal (126 +/- 2 days gestation) lambs (full term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. ⋯ The pulmonary vasodilator effect of cinaciguat was prolonged, decreasing pulmonary vascular resistance for >1.5 h after brief infusion. In vitro stimulation of ovine fetal pulmonary artery smooth muscle cells with cinaciguat after ODQ treatment resulted in a 14-fold increase in cGMP compared with non-ODQ-treated cells. We conclude that cinaciguat causes potent and sustained fetal pulmonary vasodilation that is augmented in the presence of oxidized sGC and speculate that cinaciguat may have therapeutic potential for severe neonatal pulmonary hypertension.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Aug 2009
Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor.
Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. ⋯ This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Aug 2009
Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury.
Intact alveolar barrier function is associated with better outcomes in acute lung injury patients; however, the regulation of alveolar epithelial paracellular transport during lung injury has not been extensively investigated. This study was undertaken to determine whether changes in tight junction claudin expression affect alveolar epithelial barrier properties and to determine the mechanisms of altered expression. In anesthetized mice exposed to ventilator-induced lung injury, claudin-4 was specifically induced among tight junction structural proteins. ⋯ In vitro phorbol ester induced a ninefold increase in claudin-4 expression that was dependent on PKC activation and the JNK MAPK pathway. These data establish that changes in alveolar epithelial claudin expression influence paracellular transport, alveolar fluid clearance rates, and susceptibility to pulmonary edema. We hypothesize that increased claudin-4 expression early in acute lung injury represents a mechanism to limit pulmonary edema and that the regulation of alveolar epithelial claudin expression may be a novel target for acute lung injury therapy.