American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2010
Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury.
Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. ⋯ The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2010
Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) is thought to involve inflammatory infiltration of leukocytes, lung injury induced by reactive oxygen species (ROS), in particular superoxide anion, and fibrosis (collagen deposition). No treatment has been shown to improve definitively the prognosis for IPF patients. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anion to hydrogen peroxide, which is subsequently detoxified by catalase. ⋯ Intratracheal administration or inhalation of PC-SOD also attenuated the bleomycin-induced inflammatory response and fibrosis. The bell-shaped dose-response profile of PC-SOD was not observed for these routes of administration. We consider that, compared with intravenous administration, inhalation of PC-SOD may be a more therapeutically beneficial route of administration due to the higher safety and quality of life of the patient treated with this drug.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2010
Respiratory syncytial virus induces airway insensitivity to beta-agonists in BALB/c mice.
beta-Adrenergic agonists (beta-agonists) are commonly used to treat respiratory syncytial virus (RSV) bronchiolitis but are generally ineffective for unknown reasons. We have previously shown that RSV strain A2 inhibits bronchoalveolar epithelial responses to beta-agonists in a BALB/c mouse model by inducing heterologous keratinocyte cytokine (KC)/CXCR2-mediated desensitization of epithelial beta(2)-adrenergic receptors. The aim of the current study was to determine whether RSV also induces airway insensitivity to beta-agonists. ⋯ Terbutaline insensitivity at 2 d.p.i. could be reversed by systemic preinfection treatment with neutralizing anti-CXCR2 antibodies, which reduced bronchoalveolar lavage (BAL) neutrophil counts but did not alter viral replication, BAL KC levels, or lung edema. Terbutaline insensitivity was also reversed by postinfection nebulization with neutralizing anti-KC or anti-CXCR2 antibodies and could be replicated in normal, uninfected mice by nebulization with recombinant KC. These data suggest that KC/CXCR2-mediated airway insensitivity to beta-agonists may underlie the modest utility of these drugs as bronchodilators in therapy for acute RSV bronchiolitis.