American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2011
Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury.
Ventilator-induced lung injury (VILI) due to high tidal volume (V(T)) is associated with increased levels of circulating factors that may contribute to, or be markers of, injury. This study investigated if exclusively lung-derived circulating factors produced during high V(T) ventilation can cause or worsen VILI. In isolated perfused mouse lungs, recirculation of perfusate worsened injury (compliance impairment, microvascular permeability, edema) induced by high V(T). ⋯ Mediators of the TER decrease were heat-sensitive, transferable via Folch extraction, and (following ultrafiltration, 3 kDa) comprised both smaller and larger molecules. Although several classes of candidate mediators, including protein cytokines (e.g., tumor necrosis factor-α, interleukin-6, macrophage inflammation protein-1α) and lipids (e.g., eicosanoids, ceramides, sphingolipids), have been implicated in VILI, only prostanoids accumulated in the perfusate in a pattern consistent with a pathogenic role, yet cyclooxygenase inhibition did not protect against injury. Although no single class of factor appears solely responsible for the decrease in barrier function, the current data implicate lipid-soluble protein-bound molecules as not just markers but pathogenic mediators in VILI.