American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2014
ReviewNovel regulators of endothelial barrier function.
Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2014
Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.
Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. ⋯ In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2014
Biography Historical ArticleCarl Wilhelm Scheele, the discoverer of oxygen, and a very productive chemist.
Carl Wilhelm Scheele (1742-1786) has an important place in the history of the discovery of respiratory gases because he was undoubtedly the first person to prepare oxygen and describe some of its properties. Despite this, his contributions have often been overshadowed by those of Joseph Priestley and Antoine Lavoisier, who also played critical roles in preparing the gas and understanding its nature. Sadly, Scheele was slow to publish his discovery and therefore Priestley is rightly recognized as the first person to report the preparation of oxygen. ⋯ He was elected to the Royal Swedish Academy of Science but only attended one meeting. Partly as a result, he remains a somewhat nebulous figure despite the critical contribution he made to the history of respiratory gases and his extensive researches in other areas of chemistry. His death at the age of 43 may have been hastened by his habit of tasting the chemicals that he worked on.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Dec 2014
Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency.
Whereas epidemiological data strongly link vitamin D (VD) deficiency to childhood asthma, the underlying molecular mechanisms remain unknown. Although VD is known to stimulate alveolar epithelial-mesenchymal interactions, promoting perinatal lung maturation, whether VD supplementation during this period protects against childhood asthma has not been demonstrated experimentally. Using an in vivo rat model, we determined the effects of perinatal VD deficiency on overall pulmonary function and the tracheal contraction as a functional marker of airway contractility. ⋯ However, the cholecalciferol deficiency-mediated increase in tracheal contractility in the cholecalciferol-depleted group was only blocked by supplementation with 500 IU/kg cholecalciferol. Therefore, in addition to altering alveolar epithelial-mesenchymal signaling, perinatal VD deficiency also alters airway contractility, providing novel insights to asthma pathogenesis in perinatally VD-deficient offspring. Perinatal VD supplementation at 500 IU/kg appears to effectively block these effects of perinatal VD deficiency in the rat model used, providing a strong clinical rationale for effective perinatal VD supplementation for preventing childhood asthma.