American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2011
Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality.
A synthetic 7-mer, HHHRHSF, was recently identified by screening a phage display library for binding to the Tie-2 receptor. A polyethylene-oxide clustered version of this peptide, termed vasculotide (VT), was reported to activate Tie-2 and promote angiogenesis in a mouse model of diabetic ulcer. We hypothesized that VT administration would defend endothelial barrier function against sepsis-associated mediators of permeability, prevent lung vascular leakage arising in endotoxemia, and improve mortality in endotoxemic mice. ⋯ Pretreatment with VT improved survival by 41.4% (n = 15/group, P = 0.02) and post-LPS administration of VT improved survival by 33.3% (n = 15/group, P = 0.051). VT-mediated protection from LPS lethality was lost in Tie-2 heterozygous mice, in agreement with VT's proposed receptor specificity. We conclude that this synthetic Tie-2 agonist, completely unrelated to endogenous Tie-2 ligands, is sufficient to activate the receptor and its downstream pathways in vivo and that the Tie-2 receptor may be an important target for therapeutic evaluation in conditions of pathological vascular leakage.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2011
Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung.
Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. ⋯ These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2011
Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury.
Ventilator-induced lung injury (VILI) due to high tidal volume (V(T)) is associated with increased levels of circulating factors that may contribute to, or be markers of, injury. This study investigated if exclusively lung-derived circulating factors produced during high V(T) ventilation can cause or worsen VILI. In isolated perfused mouse lungs, recirculation of perfusate worsened injury (compliance impairment, microvascular permeability, edema) induced by high V(T). ⋯ Mediators of the TER decrease were heat-sensitive, transferable via Folch extraction, and (following ultrafiltration, 3 kDa) comprised both smaller and larger molecules. Although several classes of candidate mediators, including protein cytokines (e.g., tumor necrosis factor-α, interleukin-6, macrophage inflammation protein-1α) and lipids (e.g., eicosanoids, ceramides, sphingolipids), have been implicated in VILI, only prostanoids accumulated in the perfusate in a pattern consistent with a pathogenic role, yet cyclooxygenase inhibition did not protect against injury. Although no single class of factor appears solely responsible for the decrease in barrier function, the current data implicate lipid-soluble protein-bound molecules as not just markers but pathogenic mediators in VILI.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2011
Inhibition of apoptosis by 60% oxygen: a novel pathway contributing to lung injury in neonatal rats.
During early postnatal alveolar formation, the lung tissue of rat pups undergoes a physiological remodeling involving apoptosis of distal lung cells. Exposure of neonatal rats to severe hyperoxia (≥95% O(2)) both arrests lung growth and results in increased lung cell apoptosis. ⋯ Consistent with this hypothesis, we observed that the parenchymal thickening induced by exposure to 60% O(2) was associated with decreased numbers of apoptotic cells, increased expressions of the antiapoptotic regulator Bcl-xL, and the putative antiapoptotic protein survivin, and decreased expressions of the proapoptotic cleaved caspases-3 and -7. In summary, exposure of the neonatal rat lung to moderate hyperoxia results in an inhibition of physiological apoptosis, which contributes to the parenchymal thickening observed in the resultant lung injury.