American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2010
Inflammatory stimulation and hypoxia cooperatively activate HIF-1{alpha} in bronchial epithelial cells: involvement of PI3K and NF-{kappa}B.
The transcription factor hypoxia-inducible factor (HIF)-1 plays a central physiological role in oxygen and energy homeostasis, and is activated during hypoxia by stabilization of the subunit HIF-1α. Recent studies have demonstrated that non-hypoxic stimuli can also activate HIF-1α in a cell-specific manner. Here, we demonstrate that stimulation of BEAS-2B cells and primary human bronchial epithelial cells by proinflammatory cytokines TNFα/IL-4 strongly induced expression and transcriptional activity of HIF-1α under normoxic conditions and amplified hypoxic HIF-1α activation. ⋯ In line, TNFα/IL-4 also activated NF-κB, whereas blocking of NF-κB by an inhibitor or silencing NF-κB subunit p65 attenuated HIF-1α activation by TNFα/IL-4. We also found the collaborative induction of VEGF, a potent angiogenic factor required for airway remodeling, by TNFα/IL-4 and hypoxia partially via HIF-1α pathway in BEAS-2B cells. This study reports the previously unsuspected collaborative regulation of HIF-1α by TNFα/IL-4 and hypoxia in bronchial epithelial cells partially via PI3K-mTOR and NF-κB pathway, and thereby will lead to the elucidation of the importance of HIF-1 in integrating inflammatory and hypoxic response in the pathogenesis of airway diseases.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2010
Comparative StudyReactivity of mouse alveolar macrophages to cigarette smoke is strain dependent.
Cigarette smoke (CS) is a main risk factor in chronic obstructive pulmonary disease (COPD), but only 20% of smokers develop COPD, suggesting genetic predisposition. Animal studies have shown that C57BL/6J mice are sensitive to CS and develop emphysema, whereas Institute of Cancer Research (ICR) mice are not. To investigate the potential factors responsible for the different susceptibility of ICR and C57BL/6J mice to CS, we evaluated in alveolar macrophages (AMs) isolated from these strains of mice the possible mechanisms involved in the inflammatory and oxidative responses induced by CS. ⋯ Furthermore, CSE enhanced NF-κB-dependent cytokine release only in C57BL/6J AMs. We suggest that an imbalance in oxidative stress decreases HDAC2 levels and facilitates NF-κB binding, resulting in a proinflammatory response in C57BL/6J but not in ICR AMs. These results could contribute in understanding the different susceptibility to CS of these strains of mice.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2010
Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury.
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease for which no effective therapy has been identified. The disease is characterized by excessive collagen deposition, possibly in response to dysregulated wound healing. Mediators normally involved in would healing induce proliferation of fibroblasts and their differentiation to myofibroblasts that actively secrete collagen. ⋯ In vivo, oral curcumin treatment showed no effect on important measures of bleomycin-induced injury in mice, whereas intraperitoneal curcumin administration effectively inhibited inflammation and collagen deposition along with a trend toward improved survival. Intraperitoneal curcumin reduced fibrotic progression even when administered after the acute bleomycin-induced inflammation had subsided. These results encourage further research on alternative formulations and routes of administration for this potentially attractive IPF therapy.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2010
Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions.
Pulmonary arterial hypertension (PAH) is a pulmonary angioproliferative disease with high morbidity and mortality, characterized by a typical pattern of pulmonary vascular remodeling including neointimal lesions. In congenital heart disease, increased pulmonary blood flow has appeared to be a key mediator in the development of these characteristic lesions, but the molecular mechanisms underlying the pulmonary vascular lesions are largely unknown. We employed a rat model of flow-associated PAH, which induced specific pulmonary neointimal lesions. ⋯ Monocrotaline alone induced increased numbers of activated mast cells and their products. We further identified molecular pathways that may be involved in treatment with the prostacyclin analog iloprost, a vasoactive compound with clinically beneficial effects in patients with PAH, which were similar to pathways described in samples from patient studies. These pathways, associated with the development of angioproliferative lesions as well as with the response to therapy in PAH, may provide new therapeutic targets.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2010
Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury.
Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. ⋯ The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury.