American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2000
Effect of severe normocapnic hypoxia on renal function in growth-restricted newborn piglets.
To examine the effects of intrauterine growth restriction and acute severe oxygen deprivation on renal blood flow (RBF), renovascular resistance (RVR), and renal excretory functions in newborns, studies were conducted on 1-day-old anesthetized piglets divided into groups of normal weight (NW, n = 14) and intrauterine growth-restricted (IUGR, n = 14) animals. Physiological parameters, RBF, RVR, and urinary flow, were similar in NW and IUGR piglets, but glomerular filtration rate (GFR) and filtration fraction were significantly less in IUGR animals (P < 0.05). An induced 1-h severe hypoxia (arterial PO(2) = 19 +/- 4 mmHg) resulted in, for both groups, a pronounced metabolic acidosis, strongly reduced RBF, and increased fractional sodium excretion (FSE; P < 0.05) with a less-pronounced increase of RVR and arterial catecolamines in IUGR piglets. ⋯ Severe hypoxemia induces similar alterations of renal excretion in newborn piglets. However, the less-pronounced RBF reduction during hypoxemia indicates an improved adaptation of newborn IUGR piglets on periods of severely disturbed oxygenation. Furthermore, newborn piglets reestablish the ability for urine concentration and adequate sodium reabsorption early after reoxygenation so that a sustained acute renal failure was prevented.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2000
Systolic pressure predicts plasma vasopressin responses to hemorrhage and vena caval constriction in dogs.
We have proposed that the reflex increase in arginine vasopressin (AVP) secretion in response to hypovolemia is due to arterial baroreceptor unloading. If arterial pressure is the key to the mechanism, the slope relating plasma AVP to arterial pressure should be the same in response to hemorrhage, a model of true hypovolemia, and in response to thoracic inferior vena caval constriction (IVCC), a model of central hypovolemia. We tested this hypothesis in conscious, chronically instrumented dogs (n = 8). ⋯ The slopes were not altered when the experiments were repeated during acute blockade of cardiac receptors by intrapericardial procaine. Finally, sinoaortic denervation (n = 4) markedly reduced the slope in both the hemorrhage and IVCC treatments. We conclude that baroreceptors monitoring arterial pressure provide the principal reflex control of AVP secretion in response to hypovolemia.