American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · May 2004
Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. ⋯ In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · May 2004
Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound.
The purpose of the present study was to examine whether exogenous liposomal cDNA gene transfer is recognized by the cell and causes endogenous cellular and physiological responses. When administered as a protein, IGF-I is known to cause adverse side effects due to lack of cellular responses. Therefore, we used IGF-I cDNA as a vector to study cellular and physiological effects after liposomal administration to wounded skin. ⋯ IGF-I cDNA increased VEGF concentrations and thus neovascularization. Exogenous-administered IGF-I cDNA is recognized by the cell and leads to similar intracellular responses as the endogenous gene. Liposomal IGF-I gene transfer further leads to improved dermal and epidermal regeneration by interacting with other growth factors.