American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2009
The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation.
We previously demonstrated that endotoxin-induced sepsis results in caspase 8-mediated diaphragmatic dysfunction. The upstream signaling pathways modulating diaphragm caspase 8 activation in response to endotoxin administration are, however, unknown. The purpose of the present study was to test the hypothesis that the JNK (Jun N-terminal Kinase) pathway is activated in the diaphragm during sepsis and contributes to sepsis-induced diaphragm caspase 8 activation. ⋯ Inhibition of JNK with SP600125 or by use of JNK-deficient animals prevented diaphragm caspase 8 activation (P < 0.01) and prevented diaphragm weakness (P < 0.05). JNK inhibition also prevented caspase 8 activation in cytokine-treated muscle cells (P < 0.001). These data implicate JNK activation as a major factor mediating inflammation-induced skeletal muscle caspase 8 activation and weakness.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2009
Chronic ethanol attenuates circadian photic phase resetting and alters nocturnal activity patterns in the hamster.
Acute ethanol (EtOH) administration impairs circadian clock phase resetting, suggesting a mode for the disruptive effect of alcohol abuse on human circadian rhythms. Here, we extend this research by characterizing the chronobiological effects of chronic alcohol consumption. First, daily profiles of EtOH were measured in the suprachiasmatic nucleus (SCN) and subcutaneously using microdialysis in hamsters drinking EtOH. ⋯ Water controls had photic phase advances of 1.1 +/- 0.3 h, while hamsters deprived of EtOH for 2-3 days showed enhanced shifts (2.1 +/- 0.3 h; P < 0.05 vs. controls). Thus, in chronically drinking hamsters, brain EtOH levels are sufficient to inhibit photic phase resetting and disrupt circadian activity. Chronic EtOH did not impair photic entrainment; however, its replacement with water potentiated photic phase resetting.