American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2012
Comparative Study Controlled Clinical TrialEnhanced renal Na+ reabsorption by carbohydrate in beverages during restitution from thermal and exercise-induced dehydration in men.
We examined whether carbohydrate in beverages accelerated fluid retention during recovery from thermal and exercise-induced dehydration and whether it was caused in part by an enhanced renal Na+ reabsorption rate due to insulin secretion. After dehydrating by ∼2.3% body weight by exercise in a hot environment, seven young men underwent high-carbohydrate, low-carbohydrate, or control rehydration trials by drinking one of three beverages with 3.4 g glucose + 3.1 g fructose, 1.7 g glucose + 1.6 g fructose, or 0.0 g glucose + 0.0 g fructose per deciliter, respectively, in a common composition of electrolyte solution: 21 meq/l [Na+], 5 meq/l [K+], 16.5 meq/l [Cl-], 10 meq/l [citrate(-3)]. They drank the same amount of beverage as total body weight loss within 30 min. ⋯ After dehydration, PV decreased by ∼5% and plasma osmolality increased by ∼6 mosmol/kg H2O in all trials with no significant differences among them. We found in the high-carbohydrate trial that 1) PV increased faster than in the control trial and remained at the higher level than other trials for the last 60 min (P < 0.05); 2) accumulated urine volume was smallest after 90 min (P < 0.05); 3) the renal Na+ reabsorption rate was greatest for the first 120 min (P < 0.05); 4) during which period [AVP]p and [Ald](p) were not significantly different from other trials (both, P > 0.9); and 5) [Glc](p) and [Ins]s were highest from 45 to 105 min (P < 0.05) during rehydration. Thus carbohydrate in beverages enhances renal Na+ reabsorption, and insulin is possibly involved in this enhancement.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2012
Comparative StudyArchitecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. ⋯ These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences.