American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jun 2013
Comparative StudyRole of pituitary in K+ homeostasis: impaired renal responses to altered K+ intake in hypophysectomized rats.
The kidneys maintain extracellular K⁺ homeostasis by altering K⁺ excretion to match K⁺ intake. Because this can occur without changes in plasma K⁺ concentrations ([K⁺]), how the kidneys sense K⁺ intake is unclear. We tested the hypothesis that the pituitary plays a critical role in signaling K⁺ intake to the kidneys. ⋯ In Hypox rats, whereas absorptive renal K⁺ excretion was changed in response to changes in K⁺ intake, postabsorptive K⁺ excretion was not responsive (P < 0.001), indicating impaired renal responses to altered K⁺ intake. In addition, Hypox rats, compared with control rats, showed K⁺ intolerance (increases in plasma [K⁺]) upon feeding (i.e., K⁺ intake) at night or following an intravenous K⁺ infusion (P < 0.01), indicating an impairment of acute renal responses to K⁺ intake. These data support that the pituitary plays a key role in the signaling of K⁺ intake to the kidneys (and kidney responses to altered K⁺ intake).
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jun 2013
Favorable effects of carotid endarterectomy on baroreflex sensitivity and cardiovascular neural modulation: a 4-month follow-up.
Carotid surgery variably modifies carotid afferent innervation, thus affecting arterial baroreceptor sensitivity. Low arterial baroreflex sensitivity is a well-known independent risk factor for cardiovascular diseases. The aim of this study was to assess the 4-mo effects of carotid endarterectomy (CEA) on arterial baroreceptor sensitivity and cardiovascular autonomic profile in patients with unilateral carotid stenosis. ⋯ Accordingly, the patients' autonomic profile had shifted toward reduced cardiac and vascular sympathetic activation and enhanced cardiac vagal activity. The capability to increase cardiovascular sympathetic activation in response to orthostasis was restored. Baroreceptor sensitivity improvement might play an additional role in the more favorable outcome observed in patients after carotid surgery.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jun 2013
Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia.
Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50-60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. ⋯ Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.