American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2009
Comparative StudyCardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.
We examined fatty acid transporters, transport, and metabolism in hearts and red and white muscles of lean and insulin-resistant (week 6) and type 2 diabetic (week 24) Zucker diabetic fatty (ZDF) rats. Cardiac fatty acid transport was similar in lean and ZDF hearts at week 6 but was reduced at week 24 (-40%) in lean but not ZDF hearts. Red muscle of ZDF rats exhibited an early susceptibility to upregulation (+66%) of fatty acid transport at week 6 that was increased by 50% in lean and ZDF rats at week 24 but remained 44% greater in red muscle of ZDF rats. ⋯ Thus insulin resistance and type 2 diabetes are accompanied by tissue-specific differences in FAT/CD36 and fatty acid transport and metabolism. Upregulation of fatty acid transport increased red muscle, but not cardiac, triacylglycerol accumulation. White muscle lipid metabolism dysregulation was not observed.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2009
The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation.
We previously demonstrated that endotoxin-induced sepsis results in caspase 8-mediated diaphragmatic dysfunction. The upstream signaling pathways modulating diaphragm caspase 8 activation in response to endotoxin administration are, however, unknown. The purpose of the present study was to test the hypothesis that the JNK (Jun N-terminal Kinase) pathway is activated in the diaphragm during sepsis and contributes to sepsis-induced diaphragm caspase 8 activation. ⋯ Inhibition of JNK with SP600125 or by use of JNK-deficient animals prevented diaphragm caspase 8 activation (P < 0.01) and prevented diaphragm weakness (P < 0.05). JNK inhibition also prevented caspase 8 activation in cytokine-treated muscle cells (P < 0.001). These data implicate JNK activation as a major factor mediating inflammation-induced skeletal muscle caspase 8 activation and weakness.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2009
Chronic ethanol attenuates circadian photic phase resetting and alters nocturnal activity patterns in the hamster.
Acute ethanol (EtOH) administration impairs circadian clock phase resetting, suggesting a mode for the disruptive effect of alcohol abuse on human circadian rhythms. Here, we extend this research by characterizing the chronobiological effects of chronic alcohol consumption. First, daily profiles of EtOH were measured in the suprachiasmatic nucleus (SCN) and subcutaneously using microdialysis in hamsters drinking EtOH. ⋯ Water controls had photic phase advances of 1.1 +/- 0.3 h, while hamsters deprived of EtOH for 2-3 days showed enhanced shifts (2.1 +/- 0.3 h; P < 0.05 vs. controls). Thus, in chronically drinking hamsters, brain EtOH levels are sufficient to inhibit photic phase resetting and disrupt circadian activity. Chronic EtOH did not impair photic entrainment; however, its replacement with water potentiated photic phase resetting.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Aug 2009
Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia.
Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. ⋯ SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Aug 2009
A role of the (pro)renin receptor in neuronal cell differentiation.
The (pro)renin receptor [(P)RR] plays a pivotal role in the renin-angiotensin system. Experimental models emphasize the role of (P)RR in organ damage associated with hypertension and diabetes. However, a mutation of the (P)RR gene, resulting in frame deletion of exon 4 [Delta4-(P)RR] is associated with X-linked mental retardation (XLMR) and epilepsy pointing to a novel role of (P)RR in brain development and cognitive function. ⋯ Cotransfection of PC-12 cells with (P)RR and Delta4-(P)RR cDNA resulted in altered localization of (P)RR and inhibited (P)RR redistribution to neurite projections upon NGF stimulation. Furthermore, (P)RR dimerized with itself and with Delta4-(P)RR, suggesting that the XLMR and epilepsy phenotype resulted from a dominant-negative effect of Delta4-(P)RR, which coexists with normal transcript in affected males. In conclusion, our results show that (P)RR is expressed in mouse brain and suggest that the XLMR and epilepsy phenotype might result from a dominant-negative effect of the Delta4-(P)RR protein.