American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jun 2004
Abdominal vagal mediation of the satiety effects of CCK in rats.
CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of N alpha-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 micromol/kg i.v.) or a 3-h infusion of A-70104 (3 micromol.kg(-1).h(-1) i.v.) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). ⋯ In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · May 2004
Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. ⋯ In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · May 2004
Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound.
The purpose of the present study was to examine whether exogenous liposomal cDNA gene transfer is recognized by the cell and causes endogenous cellular and physiological responses. When administered as a protein, IGF-I is known to cause adverse side effects due to lack of cellular responses. Therefore, we used IGF-I cDNA as a vector to study cellular and physiological effects after liposomal administration to wounded skin. ⋯ IGF-I cDNA increased VEGF concentrations and thus neovascularization. Exogenous-administered IGF-I cDNA is recognized by the cell and leads to similar intracellular responses as the endogenous gene. Liposomal IGF-I gene transfer further leads to improved dermal and epidermal regeneration by interacting with other growth factors.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Mar 2004
Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure.
Although sepsis is the major cause of mortality and morbidity in the critically ill, precise mechanism(s) causing multiorgan dysfunction remain unclear. Findings of impaired oxygen utilization in septic patients and animals implicate nitric oxide-mediated inhibition of the mitochondrial respiratory chain. We recently reported a relationship between skeletal muscle mitochondrial dysfunction, clinical severity, and poor outcome in patients with septic shock. ⋯ Likewise, histological evidence of cell death was lacking, suggesting the possibility of an adaptive programmed shutdown of cellular function. This study thus supports the hypothesis that multiorgan dysfunction induced by severe sepsis has a bioenergetic etiology. Despite the well-recognized limitations of laboratory models, we found clear parallels between this long-term model and human disease characteristics that will facilitate future translational research.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Dec 2003
Mu-opioid receptor agonist effects on medullary respiratory neurons in the cat: evidence for involvement in certain types of ventilatory disturbances.
Mu-opioid receptor agonists depress tidal volume, decrease chest wall compliance, and increase upper airway resistance. In this study, potential neuronal sites and mechanisms responsible for the disturbances were investigated, dose-response relationships were established, and it was determined whether general anesthesia plays a role. Effects of micro-opioid agonists on membrane properties and discharges of respiratory bulbospinal, vagal, and propriobulbar neurons and phrenic nerve activity were measured in pentobarbital-anesthetized and unanesthetized decerebrate cats. ⋯ Such effects on three types of vagal motoneurons might explain tonic vocal fold closure and pharyngeal obstruction of airflow. Measurements of membrane potential and input resistance suggest the effects on bulbospinal Aug-E neurons and vagal motoneurons are mediated presynaptically. Opioid effects on the respiratory neurons were similar in anesthetized and decerebrate preparations.