American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Oct 2018
Prevention of the progression of renal injury in diabetic rodent models with preexisting renal disease with chronic endothelin A receptor blockade.
The endothelin (ET) system has emerged as a therapeutic target for the treatment of diabetic nephropathy (DN). The present study examined whether chronic endothelin A (ETA) receptor blockade with atrasentan prevents the progression of renal injury in two models of DN with preexisting renal disease that exhibit an increased renal ET-1 system compared with nondiabetic rats: streptozotocin-treated Dahl salt-sensitive (STZ-SS) and type 2 diabetic nephropathy (T2DN) rats. Nine week-old SS rats were treated with (STZ; 50 mg/kg ip) to induce diabetes. ⋯ In contrast to the STZ-SS study, atrasentan had no effect on MAP or proteinuria in T2DN rats. However, treatment with atrasentan significantly decreased glomerular injury and renal fibrosis and prevented the decline in renal function in T2DN rats. These data indicate that chronic ETA blockade produces advantageous changes in renal hemodynamics that slow the progression of renal disease and also reduces renal histopathology in the absence of reducing arterial pressure and proteinuria.
-
Am. J. Physiol. Renal Physiol. · Oct 2018
Expression of soluble epoxide hydrolase in renal tubular epithelial cells regulates macrophage infiltration and polarization in IgA nephropathy.
Tubulointerstitial inflammatory cell infiltration and activation contribute to kidney inflammation and fibrosis. Epoxyeicosatrienoic acids (EETs), which are rapidly metabolized to dihydroxyeicosatrienoic acids by the soluble epoxide hydrolase (sEH), have multiple biological functions, including vasodilation, anti-inflammatory action, and others. Inhibition of sEH has been demonstrated to attenuate inflammation in many renal disease models. ⋯ We found that the upregulation of sEH promoted M1 polarization. However, pharmacological inhibition of sEH and supplementation with EETs reversed the conditioning effects of urinary proteins by inhibiting M1 polarization through the NF-κB pathway and stimulating M2 polarization through the phosphatidylinositol 3-kinase pathway. These data suggest that inhibition of sEH could be a new strategy to prevent the progression of inflammation and to attenuate renal tubulointerstitial fibrosis.